63224 (695252), страница 2

Файл №695252 63224 (Сучасні квантові криптографічні лінії зв’язку) 2 страница63224 (695252) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)


Рисунок 3 – Схема квантової криптосистеми з поляризаційним кодуванням

Інший приклад квантової криптосистеми з поляризаційним кодуванням наведена на рис. 3. Система, вперше винесена за рамки лабораторії, складалася із двох блоків, зв'язаних оптоволоконним (ОВ), а не повітряним просторовим каналом.

Блок на стороні абонента А складається із чотирьох лазерних діодів (LD), що випромінюють короткі (1 нс) світлові імпульси, фотони яких можуть бути поляризовані в базисі "+" (90° і 0°) і в базисі "×" (-45°, 45°). Для передачі одного біту включається один з діодів. Імпульси від LD послабляються фільтром F для зменшення кількості фотонів, що доводяться на один імпульс, до величини порядку одиниці. Після цього вони вводяться у волокно квантового каналу й передаються на прийомний блок абонента Б.

Основною вимогою, що накладається на квантовий канал, є збереження поляризації фотонів по всьому шляху проходження до блоку абонента Б, щоб він мав можливість одержати інформацію, що кодує абонент А, у неспотвореному вигляді. Поляризаційна модова дисперсія (ПМД) може змінити поляризацію фотонів, якщо внесена нею затримка більше часу когерентності, що накладає обмеження на використовувані типи лазерів.

На стороні абонента Б імпульси проходять через низку хвильових пластинок що(імітують контролер поляризації), використованих для відновлення вихідних поляризаційних станів шляхом компенсації змін, внесених волокном. Потім промінь світла розщеплюється за допомогою розщеплювача BS і подається на два поляризаційних розщіплювачі (PBS), що формують два типи базису: "×" (1) і "+" (2).

Прийняті фотони аналізуються у двох PBS: у нижньому - з базисом 2 ("+"), що використовує прямий промінь, який пройшов через BS, за допомогою двох лічильників фотонів (APD); у верхньому - з базисом 1 ("×"), що використовує промінь, відбитий від BS нагору, за допомогою двох аналогічних лічильників фотонів (APD). Поляризація відбитих нагору фотонів повертається хвильовою пластинкою (/2) на 45° (з -45° до 0° і з 45° до 90°), реалізуючи, таким чином, виміри в діагональному базисі.

А.Мюллер і ін. використали подібну криптосистему для проведення експериментів в області квантової криптографії. Їм вдалося передати квантовий ключ на відстань 1100 метрів, використовуючи фотони з довжиною хвилі 800 нм. Для збільшення довжини передачі вони використали фотони з довжиною хвилі 1300 нм і досягли 23-кілометрової дистанції передачі ключа. Як квантовий канал використовувався стандартний оптоволоконний кабель.

Ці експерименти показали, що зміни поляризації, внесені оптичним волокном, нестабільними. Причому поляризація може різко змінюватися, хоча і може мати короткі періоди стабільності (порядку декількох хвилин). Це означає, що квантова криптографічна система вимагає створення механізму стабілізації або активної компенсації таких змін. Такі механізми стабілізації й способи автоматичного контролю поляризації існують, але вони є малоефективними і поки не використовуються. Відмічено також, що використання замість стандартного ОВ волокна зі збереженням поляризації не вирішує проблему, хоча і дозволяє збільшувати довжину ділянки з контрольованою поляризацією.

3. Волоконно-оптичні системи передавання з фазовим кодуванням

Поняття фази оптичного випромінювання (завдяки корпускулярно-хвильовому дуалізму) справедливе не тільки для світлового променя (тобто хвилі в класичній оптиці), але і для одиночних фотонів (тобто часток, у квантовій оптиці), поведінка яких (розщеплення, додавання й інтерференція) інтерпретується, однак, як хвильова.


Рисунок 4 – Схема квантової криптосистеми з двома інтерферометрами Маха-Цендера

Для цих цілей може бути використаний інтерферометр Маха-Цендера разом з однофотонним джерелом випромінювання і детекторами фотонів. Блок на стороні абонента тоді буде містити джерело, розгалуджувач і фазовий модулятор РМφА, а блок на стороні абонента буде змінюватися з фазового модулятора РМφВ, розгалуджувача й детекторів APD, імовірність реєстрації фотона на одному з виходів яких ("0" або "1") буде мінятися зі зміною фази. На рис. 4 показана схема криптосистеми з використанням двох ОВ-интерферометрів Маха-Цендера (А и В), з'єднаних ОВ-кабелем.

Як видно з рисунка, передавач А посилає потік одиночних фотонів довжиною хвилі 1550 нм у вигляді сильно ослаблених лазерних імпульсів (формуючи так звану ланку слабкої когерентності). Кожен із цих фотонів проходить через інтерферометр Маха-Цендера, що випадково модулюється за допомогою РМφА, встановлюючись на одну із чотирьох фаз (варіант, що відповідає використанню протоколу BB84), що діє на інтервалі проходження імпульсу. Тим самим модулюється "фаза" хвильового образу фотона, обрана на основі використованого базису ("+","×") і значення ("0","1"), важливих прі самоінтерференції на виході інтерферометра.

Приймач на стороні Б містить інший схожий інтерферометр, який випадково моделюється за допомогою РМφВ для встановлення однієї із двох фаз, необхідної для встановлення потрібного базису. Фотон, пройшовши інтерферометр Б, відновлює, інтерферуючи на вихідному розгалуджувачі, свій стан, потрапляючи на один з детекторів ("0" або "1") APD. Для синхронізації роботи детекторів А посилає (використовуючи WDM-мультиплексор) у те ж волокно потужні імпульси з довжиною хвилі 1300 нм для синхронізації й стробування діодів APD.

На рис. 4 показано механізм проходження фотонів від джерел з А до детекторів APD у Б (без урахування факту використання модуляції). На рис. 4 а показані незбалансовані інтерферометри Маха-Цендера, плечі яких різні: нижні (короткі) мають довжину SA і SB, а верхні (довгі) - довжину LA і LB. Це значить, що плечі мають різну часову затримку на поширення хвильового імпульсу. Фотон, розглянутий як хвиля, розщеплюється на два однакових промені першим розгалуджувачем (50/50) в абонента. Нижній проходить шлях SA, а верхній - LA до вихідного розгалуджувача, де промені поєднуються, створюючи дипульс LASВ, що, пройшовши квантовий ОВ-канал, доходить до вхідного розгалуджувача (50/50) інтерферометра Б. Потім він знову розщеплюється на два однакових промені. Нижній проходить шлях SB, а верхній - LB до вихідного розгалуджувача Боба, де вони утворюють два дипульса: нижній LASВ /SASB і верхній - LALВ / SALВ. Об'єднання їх показано на рис. 4 б. Воно призводить (за умови ідентичності/налаштування обох інтерферометрів) до формування хвилі із трьома піками: більшим центральним (SALB+ LASВ) і двома бічними (LALB і SASB).

Для опису дії модуляції в даній системі згадаємо закони відбиття/преломлення:

  • фаза променя, відбитого від границі розділу двох середовищ (з показником заломлення n1 і n2), зрушується на π/2, якщо n2 > n1 і не змінюється, якщо n2 < n1;

  • фаза променя, заломленого на границі розділу двох середовищ (якщо промінь існує), не змінюється.

На рис. 5 показано, що центральний пік у фотонному імпульсі містить інтервал когерентності (рис. 5 а), всередині якого одночасно присутні хвильові образи двох різних шляхів: SALB і LASB, фази яких, у загальному випадку, зрушені відносно один одного на деяку величину Δ. Ці два хвильових образи взаємодіють (інтерферують) при об'єднанні на виході інтерферометра в точці розгалуження в В (на рис. 6в показана границя розділу середовищ у цій точці).


Рисунок 5 – Механізм вибору «0» та «1» за допомогою APD і інтерферометра на боці Б.

Застосовуючи закони відбиття/заломлення і припускаючи, що нижче цієї границі роздягнуло середовище більше щільне, одержимо, що відбиті верхні й заломлена нижня хвилі виявляться у противофазі й знищують один одну (це називають іноді деструктивною інтерференцією), що фіксується за допомогою APD як "0" (тобто фотон не фіксується), а відбита нижня й преломлена верхня хвилі виявляться у фазі й підсилюють один одну (це називають іноді конструктивною інтерференцією), що фіксується APD як "1" (тобто фотон не фіксується).

Настроювання правильності спрацьовування APD здійснюються шляхом підстроювання фазового зсуву Δ від імпульсу до імпульсу, що и виконує абонент А шляхом установки потрібної величини зсуву фази для зсувуючої схеми свого РМφА для кожного переданого імпульсу.

Розглянемо таку схему кодування для протоколу BB84 із чотирма станами. Абонент А кодує "0" і "1" для одного фотона в кожному із двох випадково обраних неортогональних базисів (позначимо їх як 0 і 1). Так вона може представити значення біта "0" фазовим зсувом 0° (у базисі 0) або π/2 (у базисі 1), а значення "1" - фазовим зрушенням π (у базисі 0) або Зπ/2 (у базисі 1). Отже, абонент А може формувати одне із чотирьох фазових зсувів (0, π/2,π, Зπ/2) шляхом вибору чотирьох кодових комбінацій у просторі станів "біт-базис": (00, 01, 10, 11). Це можна здійснити, подаючи чотири різних напруги (умовно: 0, 1, 2, 3) на електрооптичний фазозсуваючий пристрій.

Абонент Б обирає базис, зсуваючи у випадковому порядку фазу на 0 або π/2, і привласнює APD, приєднаному до виходу "0", значення 0, a APD, приєднаному до виходу "1" - значення 1. Коли різниці фаз рівні 0 або π, абоненти А и Б використають сумісні базиси й одержують певний результат. У цих випадках абонент А може визначити, у який з детекторів абонента Б потрапить фотон і яке значення (0 або 1) отримано. Абонент Б також може встановити, яку фазу обирав абонент А при передачі кожного фотона. Якщо ж різниця фаз дорівнює π/2 або Зπ/2, то А и Б використають несумісні базиси, і фотон випадковим образом вибирає один з детекторів Б. Всі можливі комбінації зведені в таблицю.

Основні труднощі реалізації даної системи в тім, що незбалансованість інтерферометрів абонентів А и Б має бути стабільною в межах часток довжин хвилі фотонів під час передачі ключа для збереження потрібних фазових співвідношень. Це означає, що інтерферометри мають бути в термостабілізованих контейнерах, а системі необхідно забезпечити компенсацію дрейфу фази. Крім того, зміни поляризації в короткому й довгому плечах у кожному інтерферометрі мають збігатися, тобто необхідно використати контролери поляризації.

Таблиця 1 – Стани для фазового кодування/декодування протоколу ВВ84

абонент А

абонент Б

Біт

φА

Біт+базис

φВ

φА + φВ

Біт

0

0

00

0

0

0

0

0

00

π/2

3π/2

? (0/1)

0

π/2

01

0

π/2

? (0/1)

0

π/2

01

π/2

0

0

1

π

10

0

π

1

1

π

10

π/2

π/2

? (0/1)

1

3π/2

11

0

3π/2

? (0/1)

1

3π/2

11

π/2

π

1

4. Проблеми та перспективи квантових систем передавання

Характеристики

Тип файла
Документ
Размер
20,26 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7026
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее