63113 (695209), страница 2
Текст из файла (страница 2)
Рис.3. Центрировочные линзы.
Рис.4. Обработка оправы линзы после центрирования
Изображение перекрестия совмещают с центром кривизны линзы в поперечном направлении путем наклона трубки при разгибании пружины 5 винтом 6. Лучи, света, образующие изображение перекрестия в центре кривизны линзы, отражаются от поверхности линзы, установленной на центрировочном патроне, и возвращаются в трубку собранные объективом 2 на зеркале 8. Отразившись от зеркала, лучи образуют увеличенное изображение перекрестия па измерительной сетке 4 микроскопа 3.
Наблюдение за децентрировкой С центра кривизны линзы ведут при вращении шпинделя станка. Схема наблюдения показана на рис.6. Осевой луч t пучка, выходящего из трубки ЮС-13, из-за смещения
центра кривизны отражается от линзы по направлению
и возвращается в объектив трубки под углом
по отношению к первоначальному направлению, пучка t. При повороте шпинделя на 180° центр кривизны линзы займет положение
и осевой луч t отразится по направлению
, возвращаясь также под углом
к лучу t, но с противоположной стороны от оси шпинделя. Таким образом, при повороте шпинделя с линзой отраженный луч описывает коническую поверхность с углом конуса
. В результате изображение перекрестия трубки, образуемое отраженными лучами
, описывает на сетке микроскопа окружность, диаметр D которой соответствует N делениям сетки.
Диаметр окружности (в мм)
, (1)
где С — децентрировка центра кривизны линзы в мм;
— линейное увеличение объективе микроскопа 3(рис. 5);
— линейное увеличение объектива 2 трубки;
— интервал деления сетки микроскопа в мм.
Из формулы (4) следует, что величина децеитрировки
Рис.5. Схема автоколлимационной трубки ЮС-13
Перемещая объектив 2 (рис. 5.) в тубусе, изображение перекрестия трубки можно поместить практически на любое расстояние S от торца тубуса объектива. Величина S лежит в пределах от —5 см до —∞ и от +∞ до 9 см, что позволяет наблюдать изображения центров кривизны поверхностей линз с радиусами любой величины. При этом изменяется увеличение
. Для удобства определения децентрировки С на трубке нанесена шкала величины
, выраженной в микрометрах, для каждого положения объектива 2 в тубусе.
Рис.6. Схема наблюдения децентрировки.
Значения К для трубки ЮС-13 с объективом 2, состоящим из двух склеенных линз, приведены в табл. 1.
Таблица 1
| S в см К в мкм | —5 —6 —7 —9 —10 —14 —20 —50 —190 |
| S в см К в мкм | +64 +33 +20 +16 +12 +10 +9 |
При положении шкалы трубки «∞» угол наклона плоской поверхности линзы, соответствующий диаметру биения перекрестия в одно деление шкалы, равен 19" (для трубки ЮС-13).
Определив по сетке трубки число делений N, занимаемых диаметром окружности биения автоколлимационного блика от поверхности линзы, определяют децентрировку поверхности:
С = KN (2)
Допустимое биение центров кривизны
для каждой поверхности линзы указывают в технологической карте сборки в виде допустимого числа делений трубки:
Рис.7. Автоколлимационные точки одиночной линзы.
Расчет автоколлимационных точек. Автоколлимационной точкой называется точка на оси линзы, в которую необходимо поместить светящееся изображение перекрестия трубки чтобы получить отраженное от поверхности линзы изображение перекрестия па сетке трубки. Автоколлимационные точки для всех поверхностей линзы рассчитывают и вписывают в технологическую карту сборки. Отсчет положения автоколлимационных точек ведут от поверхности линзы, ближайшей к трубке ЮС-13.
Расчёт ведут по следующим формулам нулевых лучей для хода луча через преломляющие поверхности
- для высоты луча;
-для углов;
При расчёте соблюдают правило знаков, принятое в геометрической оптике.
Определим автоколлимационные точки для линзы, показанной на рис.7.
Радиусы линзы
=-30,1 мм;
=35,26 мм; толщина линзы
=2мм;
показатель преломления
=1,6242 мм; показатель преломления воздуха
.
Из точки
направляем луч на высоте
по радиусу
и определяем точку пересечения этого луча с осью линзы (точка
) после преломления на поверхности 2. Эта точка и будет автоколлимационной точкой для поверхности 1. Высоту
принимают равной единице. Как следует из рис. 7,
После преломления на поверхности 2 линзы луч пересечет оптическую ось линзы под углом
Знак минус в последней формуле означает, что автоколлимационная точка для поверхности 1 располагается слева от точки О.
Автоколлимационной точкой для поверхности 2 линзы является центр ее кривизны. Поэтому
мм.
Вследствие преломления луча на поверхности 2 через трубку наблюдают не истинную величину биения центра кривизны
а ее изображение через поверхность 2. Поэтому при определении децентрировки поверхности 1 число делений N биения блика на сетке трубки следует умножить на увеличение W преломляющей поверхности, определяемое по формуле
,
т. е. децентрировка поверхности 1 в данном случае изображается на сетке трубки уменьшенной в 1,44 раза.
Для поверхности 2 увеличение равно единице, и для расчета децентрировки в формулу (2) подставляют непосредственно число делений N биения блика на сетке трубки.
Для склеенных линз автоколлимационные точки рассчитывают аналогичным способом с учетом всех преломляющих поверхностей.
Увеличение W при этом определяют делением величины последнего угла
на
. Показатель преломления n берут для стекла линзы, децентрировку поверхности которой определяют.
Для контроля децентрировки склеенных поверхностей также рассчитывают автоколлимационные точки.
Рис.8. Разрез центрировочного патрона.
При автоколлимационной центрировке склеенных линз с осью шпиндели совмещают только центры кривизны наружных поверхностей линзы. Если наружные поверхности линзы концентричны, то с осью шпинделя совмещают и центр кривизны склейки.
Установка линзы на центрировочном патроне и расчет длины переходных втулок (оправок) для автоколлимационной центрировки. Для установки линзы на центрировочном патроне в оправе линзы предусматривают технологическую резьбу (см. резьбу М 18 X 0,5 на рис. 2). Разрез центрировочного патрона показан на рис. 8. Линзу в оправе устанавливают на патроне так, чтобы центр кривизны поверхности линзы, ближайшей к трубке ЮС-13, находился в плоскости, где расположен центр кривизны сферической части патрона (рис. 9, а). Для этого между оправой линзы и опорным торцом патрона устанавливают переходную втулку (оправку) длиной L. Длина оправки определяется из равенства
Величины
и
маркируют на патроне при его изготовлении. Величины
и
определяют из чертежа линзы. Для линз, у которых поверхность, ближайшая к трубке, выпуклая, центры кривизны совмещают так, как показано на рис. 9, б. В этом случае
. Если
велико, то оправка становится настолько длинной, что затрудняет работу с патроном, а обточка оправы линзы после центрирования становится невозможной вследствие малой жесткости системы патрон— оправка.
Для устранения этого недостатка инженер В. С. Жилин предложил центрировочный патрон с радиусом сферической поверхности противоположного знака — патрон с «отрицательным радиусом» (рис. 9, в). Для такого па-тропа длина оправки L невелика и жесткость системы достаточна для проточки оправы линзы. Длина оправки в этом случае
Рис.9. Схема для расчёта длины оправки
ЛИТЕРАТУРА
-
Малов А.Н., Законников Обработка деталей оптических приборов. Машиностроение, 2006. - 304 с.
-
Бардин А.Н. Сборник и юстировка оптических приборов. Высшая школа, 2005. - 325с.
-
Кривовяз Л.М., Пуряев Д.Т., Знаменская М.А. Практика оптической измерительной лаборатории. Машиностроение, 2004. - 333 с.















