62504 (695056), страница 2
Текст из файла (страница 2)
совокупностью причин инструментального характера
S =
G
Заменяя ограниченный раскрыв АС L=N . Δ1 с равномерным амплитудным распределением бесконечным раскрывом с гауссовым амплитудным распределением, находим диаграмму фокусировки.-
,
где Δά=ά0-άk, Δβ0=β0-βk, Δr=r0-rk -рассогласования в плоскостях и по дальности соответственно, Эффективные размеры зоны фокусировки:
Сомножитель G(0,0,0)=Eо.L1.L2/(Δl)2= E0. N1 . N2 отражает амплитуду результирующего колебания, как результата когерентного сложения колебаний от N=N1.N2 элементов ФАР.
Априорная неопределенность относительно расположения зоны фокусировки и элементов ФАР требует использования принципов самонастройки (адаптации) в системе фокусировки СВЧ энергии. Адаптивное управление амплитудно-фазовым распределением системы фокусировки СВЧ энергии может быть организовано на разных принципах. Если обеспечивать синфазное (когерентное) сложение колебаний от всех элементов ФАР с колебанием какого-то одного опорного элемента, то такая система самонастройки будет многопараметрической, которая в сравнении с малопараметрической не требует предварительной юстировки начального фазового распределения.
Проведенный синтез дискриминаторов наклона и кривизны ВФ показал, что формирование сигнала ошибки наклона ВФ должно осуществляться путем формирования двух каналов, взаимно расстроенных по пространственной частоте относительно единого фазового центра АС, суммарно-разностной обработки и скалярного перемножения (метод АМС), либо путем формирования двух каналов со взаимно рассовмещенными фазовыми центрами на расстоянии, не превышающее раскрыва около каждого фазового центра, суммарно-разностной обработкой и перемножением с предварительным сдвигом по фазе на п/2 радиан одного из сомножителей (метод ФМС). Формирование сигнала ошибки кривизны ВФ должно осуществляться путем формирования трех каналов, взаимно расстроенных по пространственной частоте относительно единого фазового центра АС, двойной суммарно-разностной обработки и перемножения со сдвигом по фазе одного из сомножителей на п/2 радиан (метод АМС), либо путем формирования трех каналов со взаимно рассовмещенными фазовыми центрами, двойной суммарно-разностной обработкой и перемножением со сдвигом по фазе одного из сомножителей на п/2 радиан (метод ФМО). Дискриминационные характеристики дискриминаторов наклона и кривизны ВФ (при L1 = L2= L) могут быть описаны выражениями вида:
где Gо и Δrэф - коэффициент направленного действия АС и эффективная протяженность зоны фокусировки по дальности соответственно. Откуда крутизна дискриминационных характеристик:
[ В/рад],
Определены спектральные плотности возмущающих воздействий дискриминаторов наклона и кривизны ВФ:
где Δэф - разрешающая способность системы фокусировки по некоторому обобщенному параметру (наклону, кривизне), μ - отношение сигнал шум, ΔFoбp- полоса пропускания фильтра обработки сигнала. Полагая сигнал сильным, дисперсия флуктуационной ошибки самонастройки по измеряемому обобщенному параметру равна:
, где ρa- эквивалентное отношение сигнал/шум по мощности в цепи самонастройки. Чтобы ошибка адаптации не приводила к заметному снижению эффективности фокусировки, необходимо выполнение условия:
. для чего необходимо, чтобы
. Это означает, что энергия сигнала, накопленного в цепи самонастройки, должна быть, по крайней мере, на порядок больше спектральной плотности шумов. Если ориентироваться только на источник внутренних шумов с коэффициентом шума кш=250, который нетрудно обеспечить, то
Продолжительность переходных процессов (время адаптации) в цепях самонастройки при неблагоприятном исходном положении цепей самонастройки в области неустойчивого равновесия с очень низким коэффициентом положительной обратной связи на порядок может превышать время памяти замкнутой цепи самонастройки в установившемся режиме: Tадапт.= 10.Tа= 10/Δfa поэтому, желая иметь быстродействующую систему фокусировки СВЧ энергии с временем адаптации порядка 10 мкс, необходимо обеспечить полосу пропускания замкнутой цепи самонастройки в установившемся режиме порядка I МГц.
Оценив размеры - элемента разрешения можно с такой точностью осуществлять программный просмотр пространства. Слово «программный» подразумевает программное управление как самим амплитудно-фазовым распределением на раскрыве антенной системы, так и управление РТС в целом. Обзор осуществляется занесением дискретных распределений для последовательной фокусировки. Иными словами происходит, установка максимума диаграммы направленности в заранее выбранные узловые точки просмотра пространства ближней зоны. Часто целесообразно получить картину распределения объектов в некоторой плоскости. В этом случае задача просмотра упрощается и сводится к сканирования с постоянной дальностью просмотра.
Если в области пространства обнаружения, куда в данный момент была установлена зона фокусировки, находится некий отражающий объект, то в силу принципа Гюйгенса-Френеля он станет источником вторичного электромагнитного излучения. Оно будет принято приемным блоком системы до загрузки очередного распределения на ФАР. При превышении этим сигналом уровня порога срабатывания автоматически принимается решение о наличии объекта в данном элементе разрешения с присвоением априорно известных координат узловой точки фокусировки. На этом оканчивается первый этап - обнаружение объекта и грубое, с точностью до элемента разрешения, определение его координат, (возможен рис. просмотра в картинной плоскости)
Для улучшения точностных характеристик измерения координат предлагается на втором этапе перейти в режим программного адаптивного поиска объекта в пределах выделенного объема элемента пространства обнаружения. Это совершенно не влечет за собой каких-либо структурных перестроек макета, а лишь заключается в автоматическом (при желании оператора) переводе системы на новый режим функционирования. Главное отличие нового этапа - в необходимости расчета амплитудно-фазовых распределений для фокусировки в промежуточные точки адаптивного поиска. Их координаты определяются непосредственно в процессе работы и заранее не известны, что не позволяет априорно иметь готовые распределения. Таким образом, на втором этапе возрастают временные затраты, но они могут компенсироваться использованием быстродействующих вычислителей и оптимальных алгоритмов поиска. Можно отказаться от расчетов АФР, а хранить их в памяти вычислителя, но это требует ее значительных объемов и приводит к ограничению точности обнаружения. Так, для увеличения точности определения координат на порядок требуемый объем памяти возрастает на три порядка (при объемном сканировании).
Точность измерения координат определяется выбором порога адаптации, а скорость адаптации (число итераций) - выбором оптимальных коэффициентов передачи каналов самонастройки по параметрам волнового фронта.
Предлагаемая система сочетает в себе достоинства грубого обнаружения при сканировании по узловым точкам (с использованием готовых АФР) и точное адаптивное измерение координат (с вычислением промежуточных АФР). Главное достоинство системы - определение трех координат, как активных так и пассивных целей в ближней зона антенной системы при простоте структурного построения (монохроматический сигнал, единая приемная и передающая антенная система, малопараметрическая фокусировка СВЧ). Существенным недостатком является плохое разрешение объектов по дальности в силу значительной протяженности зоны фокусировки по этой координате.
ЛИТЕРАТУРА
-
Охрименко А.Е. Основы извлечения, обработки и передачи информации. (В 6 частях). Минск, БГУИР, 2004.
-
Девятков Н.Д., Голант М.Б., Реброва Т.Б.. Радиоэлектроника и медицина. –Мн. – Радиоэлектроника, 2002.
-
Медицинская техника, М., Медицина 1996-2000 г.
-
Сиверс А.П. Проектирование радиоприемных устройств, М., Радио и связь, 2006.
-
Чердынцев В.В. Радиотехнические системы. – Мн.: Высшая школа, 2002.
-
Радиотехника и электроника. Межведоств. темат. научн. сборник. Вып. 22, Минск, БГУИР, 2004.















