62379 (695000), страница 2

Файл №695000 62379 (Зменшення "Блочного ефекту" при передачі зображення) 2 страница62379 (695000) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Основою стратегії аналізу многомасштабной інформації нами була обрана підхід послідовного комбінування градиентных зображень від точних масштабів до грубого. При розгляді точних масштабів основною проблемою є великий вплив шуму на градиентное зображення, на грубі ж масштабах велика помилка зсуву положення контурів об'єктів, особливо різких, від їхнього реального місця розташування. Тут ми запропонуємо підхід, що дозволяє уникати помилки зсуву положення контурів, у наступній главі ми запропонуємо метод, що дозволяє уникати вплив шуму.

Розглянемо для простоти, спочатку, одномірний випадок застосування диференціального оператора Гаусса різного масштабу для профілю зображення, що містить різку й плавну границі. На мал.4 показані випадки застосування оператора Гаусса точного й грубого масштабів. На мал.4а наведений профіль зображення, що містить різку й плавну границі об'єктів. При малому масштабі градиентного оператора (мал. 4б) положення різкої границі на профілі вихідного зображення відповідає значному сплеску інтенсивності на градиентном зображенні, однак для плавної границі сплеск інтенсивності значно менший, чим для різкої границі. З мал. 4в, що відповідає великому масштабу застосування диференціального оператора, можна помітити, що, зі збільшенням масштабу інтенсивність плавної границі на градиентном зображенні буде рости. Однак на градиентном зображенні малого масштабу її інтенсивність ще досить мала. Мала інтенсивність крапок контуру на градиентном зображенні може бути причиною втрати контуру при подальшому застосуванні до градиентному зображення методів виділення контурів. Тому при побудові градиентного зображення бажано одержувати найбільшу можливу інтенсивність крапок контуру. При великому масштабі градієнтного зображення (мал. 4в) інтенсивність плавної границі стає вже досить великий, далі, при збільшенні масштабу, залишається практично постійної. Неважко показати, що інтенсивність границі стає близької до максимально можливого, коли розмір маски диференціального оператора Гаусса досягає реальної ширини границі. Отже, для одержання максимального відгуку на градієнтном зображення для границі ширини достатнє застосування оператора градієнта маштаба не меншого чим s > WE , де s - параметр масштабу .

З малюнків 4(б) і 4(в) можна побачити, що ширина сплеску інтенсивності для різкої границі зі збільшенням масштабу збільшується й стає більшої, у порівнянні із шириною сплеску інтенсивності для цієї ж границі на зображенні малого масштабу. При цьому, максимальна величина сплеску інтенсивності залишається приблизно на одному рівні. Величину ширини сплеску інтенсивності WІ на градиентном зображенні масштабу s границі, яка має реальну ширину шляхом простих обчислень можна оцінити як W = WE + 2s. Отже, зі збільшенням масштабу s ширина сплеску інтенсивності W для границі шириною збільшується й може привести до його накладення на відгук від іншої сусідньої границі. Це й приводить до помилок зсуву границь на градієнтних зображеннях більших масштабів - сусідні, близько розташовані до один одному границі можуть зливатися в одну. У теж час, для визначення границі, тобто , для одержання максимально можливого відгуку, достатнє застосування диференціального оператора масштабу рівного реальній ширині границі. Таким чином, ми показали, що для зображень, що містять одночасно різкі й плавні границі, що часто зустрічається на практиці, застосування оператора одного масштабу або недостатньо для визначення плавних границь, або дає більшу помилку положення різких границь об'єктів[9].

Пропонується наступний підхід до рішення даної проблеми, і представляємо наступний метод комбінування многомасштабной інформації при послідовному аналізі градієнтних зображень від точних масштабів до грубого. Починати побудова многомасштабного градієнтного зображення треба з масштабу s0, що відповідає найменшій передбачуваній ширині границі. Як уже було сказано вище, для визначення границі ширини необхідне застосування масштабу не меншого чим ширина границі s > WE . Якщо найменша ширина границі невідома, то починати треба з найменшого можливого масштабу.

Іншими словами, для усунення ефекту "розширення границь" при просуванні до більших масштабів, ми забороняємо обчислення градієнта більшого масштабу в крапках, що прилягають до вже відомих границь ближче чим розмір масштабу градієнта. Тим самим, ми не одержуємо помилкові значення градієнта поблизу відомих границь і, у результаті, можемо уникнути помилки зсуву або з'єднання границь на більших масштабах. Дана послідовність дій завершується на деякому великому масштабі smax, розмір масштабу якого характеризує найбільшу можливу ширину границі об'єкта.

На малюнку 4г зображений профіль градієнтного зображення, отриманого пропонованим нами методом в одномірному випадку. Можна бачити, що ширина сплеску інтенсивності для різкої границі залишилася вузької, як на зображеннях малого масштабу, у той час як інтенсивність відгуку плавної границі велика, як на градієнтному зображенні великого масштабу. Недоліком даного підходу є те, що при наявність на зображенні шуму, на малих масштабах, коли оператор градієнта особливо чутливий до наявності шуму, ми можемо одержувати помилкові контури об'єктів. Ці помилкові границі, отримані внаслідок наявності шуму на зображенні, можуть перешкоджати обчисленню градієнтів більшого масштабу в їхніх околицях. Далі ми пропонуємо рішення даної проблеми для частого практичного випадку, коли вихідне зображення містить у переважній більшості об'єктів із замкнутими контурами й имеющими границі зі слабко мінливим нахилом уздовж контуру[10].

Модифікація методу для зображень які містять шум

У даній главі розглядається застосування запропонованого методу для зображень, які можна характеризувати наступною моделлю. Будемо вважати, що вихідне зображення містить об'єкти із замкнутими контурами, і нахил границі кожного об'єкта уздовж контуру слабко міняється. Зображення, які можна описати даною моделлю часто зустрічаються на практиці. Дійсно, скановані зображення сторінок книг, газет, журналів, містять у переважній більшості, текст, заголовки, картинки в рамках, тобто , об'єкти, що мають замкнуті контури. І, як правило, нахил границь даних об'єктів уздовж контуру слабко міняється.

Дані припущення дозволяють використати в запропонованому нами методі, на кроці визначення картини границь Eі(x,y), відомий метод сегментації - ватершед-перетворені. Відомо, що ватершед-перетворення дозволяє одержувати завжди замкнуті границі об'єктів, а об'єкти з незамкнутими границями не визначаються. А тому що в припущеннях нашої моделі нахил границь об'єктів уздовж контуру слабко міняється, то застосування ватершед-перетворення дозволить одержувати замкнуті контури об'єкта повністю на одному кроці масштабу. Дійсно, незмінність нахилу границь об'єктів уздовж контуру дозволяє одержувати однаковий відгук для всіх границь одного об'єкта на градієнтному зображенні конкретного масштабу.

Мал. 5. Модифікація запропонованого алгоритму для зашумлених зображень

На мал.5 схематично зображена послідовність виконання операцій для даної модифікації пропонованого нами методу. Перший етапом побудови градиентного зображення Dі(x,y) масштабу sі залишається таким же, як він і був описаний у попередній главі й полягає в комбінованій побудові градиентного зображення масштабу sі на основі градиентного зображення Dі-1(x,y) масштабу sі-1 і картини границь Eі-1(x,y), отриманої на sі-1 кроці. Далі, на другому етапі, до отриманого градиентному зображенню застосовується метод ватершед- перетворення, що дозволяє одержати замкнуті контури об'єктів і побудувати відповідну картину границь Eі(x,y). Після чого, на третьому етапі, виконується класифікація отриманих об'єктів, використовуючи як критерій приналежності об'єкта до шуму нечітку функцію f(q,e). Границі об'єктів, віднесених до шуму, віддаляються із зображення границь Eі(x,y). Після чого, виконуються аналогічні послідовності дій для наступних кроків.

Аналіз та оцінка результатів Вейвлет методу

На малюнку 6 показано приклад зображення багато масштабного аналізу зображення. З більшенням певного об’єкту на малюнку, при покращенні зображення ми спостерігаємо певну не чіткість, яка спостерігається зернистістю і меншою насиченістю кольорів. Зображення становиться більш темнішим.

Мал. 6. Приклад зображення яке містить об’єкти з різкими і плавними контурами Градієнтського потоку

Малюнок 7 представлений приклад напівтонового зображення утримуючі об'єкти, що мають різкі й плавні границі. Текст у верхній частині зображення має різкі контури, у той час як три латинські букви в нижній частині зображення мають плавні контури. На мал. 7а й мал. 7б представлено градієнтне зображення точного масштабу, отримане на основі вихідного зображення й, відповідно, результат застосування ватершед-перетворення. На мал. 7в і мал. 7г показані аналогічні зображення для випадку грубого масштабу. На мал. 4г і мал. 4б показаний результат використання пропонованого алгоритму. Легко бачити, що тільки у випадку застосування запропонованого алгоритму всі контури об'єктів були визначені щонайкраще

Порівняльня характеристика

Незважаючи на те, що математичний апарат вейвлет-аналіза добре розроблений і теорія, загалом , оформилася, вейвлети залишають велике поле для досліджень. Досить сказати, що вибір вейвлета, найбільш підходящого для аналізу конкретних даних, являє собою скоріше мистецтво, чим рутинну процедуру. Крім того, величезне значення має завдання розробки додатків, що використають вейвлет-аналіз - як у перерахованих областях, так і в багатьох інших, перелічити які просто не представляється можливим[11].

Градієнтський метод дозволяє одержувати комбіноване зображення, що підсумує інформацію отриману на градієнтних зображеннях різного масштабу. На відміну від інших методів, заснованих на багатомасштабному аналізі градієнтних зображень, результатом яких є картина границь, цей метод дозволяє одержати багатомасштабного градієнта зображення, до якого далі можуть бути застосовані традиційні методи сегментації. Аналіз градієнтних зображень від точних масштабів до грубого дозволяє точно визначити різкі контури об'єктів малого розміру, що є актуальним для часто, що зустрічаються на практиці зображень, що містять букви й символи. Пропонований метод дозволяє уникнути при переході до великих масштабів "розмазування" різких границь, отриманих на точних масштабах. Це досягається скасуванням застосування оператора градієнта великого масштабу на околицях різких границь. Але, у той же час, метод дозволяє визначити й плавні границі, одержувані тільки при застосуванні диференціального оператора великого масштабу.

Тому що пропонований метод є чутливим до шуму, то для зашумлених зображень пропонується модифікація методу, заснована на застосуванні ватершед-перетворення. Пропонована модифікація методу дозволяє значно зменшити негативний вплив шуму на результуюче градіентне зображення[12].

Висновки

Комп'ютерна обробка зображень як фундаментальний науковий напрямок є невичерпною. Цей напрямок опирається на математику, фізику, біологію, інформатику. Методи й засоби комп'ютерної обробки зображень мають найрізноманітніші застосування: наука, техніка, медицина, соціальна сфера. Практично вже зараз прогрес суспільства, особливо в сфері охорони здоров'я, багато в чому залежить від досягнень комп'ютерної обробки зображень. Надалі роль комп'ютерної обробки зображень у житті людини буде зростати ще більше. В даній роботі було розглянуто основні два метода покращення зображення при зменшені „Блочного ефекту”. Робота проводилася з метою виявлення можливостей та функцій, які мають методи, також були проведені порівняння й оцінки отриманих результатів. В роботі наведена, коротка характеристика вейвлет методу та градієнтського потоку, в якій стисло надана інформація про методи та їхні можливості.


Використані джерела

  1. Добеши И. Десять лекций по вейвлетам. Москва, "РХД", 2001 г.

  2. Воробьев В.И., Грибунин В.Г. Теория и практика вейвлет-преобразования. С.-Петербург, ВУС, 1999 г.

  3. Смоленцев Н. К. Основы теории вейвлетов. – М.: ДМК Пресс, 2005. – 304 с., ил.

  4. Mallat S. A theory for multiresolutional signal decomposition: the wavelet representation. IEEE Trans. Pattern Analysis and Machine Intelligence, 1989, N7, p.674-693.

  5. R.C. Gonzalez, R.E. Woods, Digital Image Processing, Prentice-Hall, Inc, Upper Saddle River, New Jersey, pp. 617-626, 2002.

  6. S. Beucher, F. Meyer, The Morphological Approach to Segmentation: The Watershed Transformation, in “Mathematical Morphology in Image Processing”, E. R. Dougherty Editor, Marcel Dekker, Inc, New York, pp.433-481, 1992.

  7. D. Ziou, S. Tabbone, “Edge Detection Techniques”- An Overview, technical report, No. 195, Dept Math & Informatique. Universit de Sherbrooke, 1997.

  8. F. Bergholm. “Edge Focusing”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(6), Nov 1987, pp. 726-741.

  9. D.J. Williams and M.Shas. “Edge Contours Using Multiple Scales”. Computer Vision, Graphics and Image Processing, 51, 1990, pp.256-274.

  10. V. Lacroix. “The Primary Raster: A Multiresolution Image Description”. In Proceedings of the 10th International Conference on Pattern Recognition, 1990, p. 903-907.

  11. J.F. Canny. “A Computational Approach to Edge Detection”. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), Nov 1986, pp. 679-698.

  12. D. Ziou and S. Tabbone. “A Multi-Scale Edge Detector”. Pattern Recognition, 26(9), 1993, pp.1305-1314.

Характеристики

Тип файла
Документ
Размер
2,08 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее