62031 (694752), страница 3

Файл №694752 62031 (Системный анализ и проблемы принятия решений) 3 страница62031 (694752) страница 32016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

— условия выполнения операции а1, а2, ..., которые известны за­ранее и изменены быть не могут;

— неизвестные условия или факторы Y1, Y2, ... ;

— элементы решения х1, х2, ..., которые нам предстоит выбрать. Пусть эффективность операции характеризуется некоторым пока­зателем W, зависящим от всех трех групп факторов. Это мы запишем в виде общей формулы:

W=W(a1, а2,...; Y1, Y2,...; х1, х2,...).

Если бы условия Y1, У2, ... были известны, мы могли бы заранее подсчитать показатель W и выбрать такое решение х1, х2, ..., при кото­ром он максимизируется. Беда в том, что параметры Y1,Y2, ... нам не­известны, а значит, неизвестен и зависящий от них показатель эффек­тивности W при любом решении. Тем не менее задача выбора решения по-прежнему стоит перед нами. Ее можно сформулировать так:

При заданных условиях а1, а2,, с учетом неизвестных факторов Y1, y2, ... найти такие элементы решения х1, х2, ..., которые по воз­можности обращали бы в максимум показатель эффективности W.

Это — уже другая, не чисто математическая задача (недаром в ее формулировке сделана оговорка «по возможности»). Наличие неизвест­ных факторов Y1, Y2, ... переводит нашу задачу в другую категорию' она превращается в задачу о выборе решения в условиях неопределен­ности.

Давайте будем честны: неопределенность есть неопределенность. Если условия выполнения операции неизвестны, мы не имеем возмож­ности, так же успешно организовать ее, как мы это сделали бы, если бы располагали большей информацией. Поэтому любое решение, принятое в условиях неопределенности, хуже решения, принятого во вполне определенной ситуации. Наше дело — сообщить своему решению в наи­большей возможной мере черты разумности. Решение, принятое в ус­ловиях неопределенности, но на основе математических расчетов, бу­дет все же лучше решения, выбранного наобум. Недаром один из вид­ных зарубежных специалистов — Т. Л. Саати в книге «Математичес­кие методы исследования операций» дает своему предмету следую­щее ироническое определение:

«Исследование операций представляет собой искусство давать плохие ответы на те практические вопросы, на которые даются еще худшие ответы другими методами».

Задачи о выборе решения в условиях неопределенности встречают­ся нам в жизни на каждом шагу. Пусть, например, мы собрались ехать в отпуск, взяв с собой чемодан ограниченного объема, причем вес че­модана не должен превышать того, при котором мы можем носить его без посторонней помощи (условия а1, а2, ...). Погода в районах путе­шествия заранее неизвестна (условия Y1, Y2, ...). Спрашивается, ка­кие предметы одежды (х1, х2, ...) следует взять с собой?

Эту задачу мы, разумеется, решаем без всякого математического аппарата, хотя, по-видимому, не без опоры на какие-то численные дан­ные (хотя бы на вероятности морозной или дождливой погоды в районах путешествия в данное время года). Однако, если нужно принять более серьезное и ответственное решение (например, о характеристиках проектируемой плотины в районе возможных паводков, или о выборе типа посадочного устройства для посадки на планету с неизвестными свойствами поверхности, или о выборе образца вооружения для борьбы с противником, характеристики которого заранее неизвестны), то выбору решения в обязательном порядке должны быть предпосланы математические расчеты, облегчающие этот выбор и сообщающие ему, в доступной мере, черты разумности.

Применяемые при этом методы существенно зависят от того, ка­кова природа неизвестных факторов Y1, Y2,и какими ориентиро­вочными сведениями о них мы располагаем.

Наиболее простым и благоприятным для расчетов является слу­чай, когда неизвестные факторы Y1, Y2,представляют собой слу­чайные величины (или же случайные функции), о которых имеются статистические данные, характеризующие их распределение.

Пусть, например, мы рассматриваем работу железнодорожной сортировочной станции, стремясь оптимизировать процесс обслужива­ния прибывающих на эту станцию грузовых поездов. Заранее неизвест­ны ни точные моменты прибытия поездов, ни количество вагонов в каж­дом поезде, ни адреса, по которым направляются вагоны. Все эти ха­рактеристики представляют собой случайные величины, закон распределения каждой из которых (и их совокупности) может быть определен по имеющимся данным обычными методами математи­ческой статистики.

Аналогично, в каждой военной операции присутствуют случай­ные факторы, связанные с рассеиванием снарядов, со случайностью моментов обнаружения целей и т. п. В принципе все эти факторы могут быть изучены методами теории вероятностей, и для них могут быть по­лучены законы распределения (или, по крайней мере, числовые харак­теристики).

В случае, когда неизвестные факторы, фигурирующие в опера­ции — Y1, Y2,…. — являются обычными случайными величинами (или случайными функциями), распределение которых, хотя бы ориен­тировочно, известно, для оптимизации решения может быть применен один из двух приемов:

— искусственное сведение к детерминированной схеме;

— «оптимизация в среднем».

Остановимся более подробно на каждом из этих приемов. Первый прием сводится к тому, что неопределенная, вероятност­ная картина явления приближенно заменяется детерминированной. Для этого все участвующие в задаче случайные факторы Y1, Y2,. приближенно заменяются не случайными (как правило, их математи­ческими ожиданиями).

Этот прием применяется по преимуществу в грубых, ориентиро­вочных расчетах, когда диапазон случайных изменений величин Y1, Y2,. сравнительно мал, т. е. они без большой натяжки могут рас­сматриваться как не случайные. Заметим, что тот же прием замены случайных величин их математическими ожиданиями может успешно применяться и в случаях, когда величины Y1, Y2,…. обладают боль­шим разбросом, но показатель эффективности W зависит от них ли­нейно (или почти линейно).

Второй прием («оптимизация в среднем»), более сложный, при­меняется, когда случайность величин Y1, Y2,. весьма существенна и замена каждой из них ее математическим ожиданием может привес­ти к большим ошибкам.

Рассмотрим этот случай более подробно. Пусть показатель эф­фективности W существенно зависит от случайных факторов (будем для простоты считать их случайными величинами) Y1, Y2,….; допус­тим, что нам известно распределение этих факторов, скажем, плот­ность распределения f (Y1, Y2,…). Предположим, что операция выпол­няется много раз, причем условия Y1, Y2, меняются от раза к разу случайным образом. Какое решение х1, х2,... следует выбрать? Очевидно, то, при котором операция в среднем будет наиболее эффективна, т. е. математическое ожидание показателя эффектив­ности W будет максимально. Таким образом, нужно выбирать такое решение X1, Х2, ... , при котором обращается в максимум математиче­ское ожидание показателя эффективности:

W=M[W}==

== …. W(a1, a2,…; y1,y2,…; x1,x2…) (y1,y2,...) dy1dy2….

Такую оптимизацию мы будем называть «оптимизацией в сред­нем».

А как же с элементом неопределенности? Конечно, в какой-то ме­ре он сохраняется. Успешность каждой отдельной операции, осущест­вляемой при случайных, заранее неизвестных значениях Y1, Y2,может сильно отличаться от ожидаемой средней, как в большую, так, к сожалению, и в меньшую сторону. При многократном осуществлении операции эти различия, в среднем, сглаживаются; однако, нередко данный способ оптимизации решения, за неимением лучшего, применяется и тогда, когда операция осуществляется всего несколько раз или даже один раз. Тогда надо считаться с возможностью неприят­ных неожиданностей в каждом отдельном случае. Утешением нам мо­жет служить мысль о том, что «оптимизация в среднем» все же лучше, чем выбор решения без всяких обоснований. Применяя этот прием к многочисленным (хотя бы и различным) операциям, все же мы в сред­нем выигрываем больше, чем если бы совсем не пользовались расчетом.

Для того, чтобы составить себе представление о том, чем мы рис­куем в каждом отдельном случае, желательно, кроме математическо­го ожидания показателя эффективности, оценивать также и его дис­персию (или среднее квадратическое отклонение).

Наиболее трудным для исследования является тот случай неопре­деленности, когда неизвестные факторы Y1, Y2, не могут быть изу­чены и описаны с помощью статистических методов: их законы распре­деления или не могут быть получены (соответствующие статистические данные отсутствуют), или, что еще хуже, таких законов распределения вовсе не существует. Это бывает, когда явление, о котором идет речь, не обладает свойством статистической устойчивости. Например, мы знаем, что на Марсе возможно наличие органической жизни, и некото­рые ученые даже считают его весьма вероятным, но совершенно невоз­можно подсчитать эту вероятность на основе каких-либо статистичес­ких данных. Другой пример: предположим, что эффективность проек­тируемого вооружения сильно зависит от того, будет ли предполагае­мый противник к моменту начала боевых действий располагать сред­ствами защиты, и если да, то какими именно? Очевидно, нет никакой возможности подсчитать вероятности этих гипотез — самое большее, их можно назначить произвольно, что сильно повредит объективности исследования.

В подобных случаях, вместо произвольного и субъективного на­значения вероятностей с дальнейшей «оптимизацией в среднем», ре­комендуется рассмотреть весь диапазон возможных условий Y1, Y2, и составить представление о том, какова эффективность операции в этом диапазоне и как на нее влияют неизвестные условия. При этом задача исследования операций приобретает новые методологические особен­ности.

Действительно, рассмотрим случай, когда эффективность опера­ции W зависит, помимо заданных условий а1,a2, ... и элементов реше­ния х1, х2,, еще и от ряда неизвестных факторов Y1, Y2,нестати­стической природы, о которых никаких определенных сведений нет, а можно делать только предположения. Попробуем все же решить за­дачу. Зафиксируем мысленно параметры Y1, Y2,…, придадим им вполне определенные значения Y1=у1, Y2=у2,..., и переведем тем самым в категорию заданных условий а1, а2, .... Для этих усло­вий мы в принципе можем решить задачу исследования операций и найти соответствующее оптимальное решение х1, х2, ... Его элементы, кроме заданных условий а1, а2, ..., очевидно, будут зависеть еще и от того, какие частные значения мы придали условиям Y1, Y2,:

х1=х1(а1, а2,…; у1, у2,…);

х2=х2(а1, а2,…; у1, у2,…).

Такое решение, оптимальное для данной совокупности условий у1, у2,… (и только для нее), называется локально-оптимальным. Это решение, как правило, уже не оптимально для других значений Y1, Y2,….Совокупность локально-оптимальных решений для всего диа­пазона условий Y1, Y2, дает нам представление о том, как мы дол­жны были бы поступать, если бы неизвестные условия Y1, Y2,были нам в точности известны. Поэтому локально-оптимальное реше­ние, на получение которого зачастую тратится много усилий, имеет в случае неопределенности сугубо ограниченную ценность. Совершен­но очевидно, что в данном случае следует предпочесть не решение, строго оптимальное для каких-то определенных условий, а ком­промиссное решение, которое, не будучи, может быть, стро­го оптимальным ни для каких условий, оказывается приемлемым в целом диапазоне условий.

В настоящее время полноценной математической «теории компро­мисса» еще не существует, хотя в теории решений и имеются некоторые попытки в этом направлении. Обычно окончательный выбор компромиссного решения осуществ­ляется человеком, который, опираясь на расчеты, может оценить и со­поставить сильные и слабые стороны каждого варианта решения в раз­ных условиях и на основе этого сделать окончательный выбор. При этом необязательно (хотя иногда и любопытно) знать точный локаль­ный оптимум для каждой совокупности условий у1, у2, …. Таким об­разом, классические вариационные и новейшие оптимизационные ме­тоды математики отступают в данном случае на задний план.

В последнюю очередь рассмотрим своеобразный случай, возни­кающий в так называемых конфликтных ситуациях, когда неизвестные параметры Y1, Y2,зависят не от объективных обстоятельств, а от активно противодействующего нам против­ника. Такие ситуации характерны для боевых действий, отчасти для спортивных соревнований, в капиталистическом обществе — для конкурентной борьбы и т. д.

Характеристики

Тип файла
Документ
Размер
112 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее