77417-1 (694614), страница 2

Файл №694614 77417-1 (Динамика подводных лодок) 2 страница77417-1 (694614) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Внедрение новых методов расчета и высокопрочных материалов завершилось контрольными испытаниями натурных и опытных конструкций новых проектов подводных лодок. Эти испытания служили прямой экспериментальной проверкой принятых конструктивных решений и готовности заводов-строителей к реализации разработанной технологии сварки.

На рубеже 70-х годов, в расчете на перспективу создания глубоководных кораблей, ЦКБ МТ “Рубин” с участием ЦНИИ им.академикаА.Н.Крылова и ЦНИИКМ “Прометей” под руководством главных конструкторов В.Н.Перегудова, С.Н.Ковалева, Н.Н.Исанина, И.Д.Спасского, И.В.Горынина и члена-корреспондента РАН В.М.Пашина, Б.И.Купенского и Г.Н.Чернышева был спроектирован и построен на ПО “Севмашпредприятие” уникальный стенд с док-камерами, в котором прошли испытания натурных и опытных отсеков всех основных типов подводных лодок, включая ПЛ “Комсомолец”.

В 70-е годы ЦНИИ им.академикаА.Н.Крылова совместно с 1-м ЦНИИМО исследовали проблемы циклической прочности конструкций корпусов подводных лодок. Постановка этих исследований была необходима, с одной стороны, для успешной разработки материалов еще большей удельной прочности (стали с пределом текучести до 100 кг/мм2, титановых сплавов с пределом текучести до 80 кг/мм2), предназначенных для глубоководных подводных лодок нового поколения. с другой стороны, в связи с ужесточением требований ВМФ к числу погружений корабля на большие глубины. Была выполнена экспериментальная оценка ресурса циклической прочности находящихся в строю подводных лодок, внесены ограничения по применению конструкций, в которых возникают растягивающие напряжения - основной источник циклических разрушений.

Ресурсные испытания были продолжены в 80-е годы, в ходе которых установлены основные закономерности развития повреждений, выявлены неудачные конструктивно-технологические решения, рекомендованы принципиально новые варианты корпусных узлов, повышающих их долговечность. Исследования циклической долговечности проводились на грани смежных научных направлений - физики твердого тела и механики разрушений. На их базе, ЦНИИ им.академикаА.Н.Крылова и ЦНИИКМ “Прометей”, были выпущены документы, позволяющие дать расчетную оценку циклической прочности узлов прочного корпуса и оценить остаточный ресурс находящихся в эксплуатации и модернизируемых подводных лодок (1989 и 1993гг.).

Работы по обеспечению прочности и рациональному конструированию корпусов глубоководных аппаратов (ГА) приобрели самостоятельное значение в 60-х годах.

Накопленный к концу 70-х - началу 80-х годов опыт создания глубоководных аппаратов, анализ проведенных теоретических и экспериментальных исследований в области прочности позволили разработать “Основные положения по методам расчета и нормам прочности прочных корпусов глубоководных аппаратов” (1981г.). Исследования прочности, несущей способности и работоспособности корпусов объектов глубоководной техники, на базе уже имеющихся данных, продолжались на новом качественном уровне. Были решены задачи прочности, устойчивости и надежности корпусов, состоящих из цилиндрических и сферических оболочек с учетом фактической точности их изготовления, определены пределы снижения несущей способности корпусов в зависимости от принятых допусков, подтверждена эффективность обработки поверхности (В.Р.Ибнояминов, Ю.П.Шишалов, В.М.Греков).

Новое направление исследований в 90-е годы - обращение к малопластичным материалам с высокой удельной прочностью. Проблема их внедрения стала весьма актуальной, поскольку применяемые материалы исчерпали свою возможность, не позволяя рассчитывать на сколько-нибудь существенное снижение массы корпусов или увеличение глубины погружения. Выполненные в 1990-1993гг. исследования подтвердили принципиальную возможность получения приемлемых показателей надежности изделий к конструкции корпусов и технологии их изготовления, выявили круг основных вопросов, требующих дальнейшего решения.

Особенностью надводного судостроения в 50-е годы были: переход полностью на сварные корпуса, широкое применение высокопрочных легированных сталей, повышение мощности и скорострельности артиллерийского вооружения, создание и опытная эксплуатация корабельного реактивного оружия и высокие эксплуатационные скорости кораблей малого и среднего водоизмещения. Появилась новая архитектура кораблей с удлиненным корпусом, развитыми надстройками, чисто продольной системой наборов корпуса. Для обеспечения проектирования кораблей нового поколения был проведен большой объем исследовательских работ.

Прежде всего, были рассмотрены особенности деформирования цельносварного корпуса корабля при действии статических и динамических нагрузок. Для этой цели выполнен комплекс теоретических исследований и проведены натурные статические испытания кораблей проектов 50 и 68 на прогиб и перегиб при нагрузке на опорах в доке. Были проведены натурные мореходные испытания этих кораблей с измерением деформаций основных продольных связей корпуса при движении с различными скоростями на волнении различной бальности.

Исследования показали, что при расчетах общей прочности корабля необходимо учитывать динамическую составляющую изгибающих моментов, которая при высоких скоростях движения может быть сопоставима со статической составляющей и даже превосходить ее. Необходимость более полного учета работы несущих связей корпуса корабля при его общих деформациях предопределила проведение тщательного изучения работы отдельных связей в составе перекрытия при различных видах нагрузки, устойчивости пластин и жестких связей в составе сложных конструкций. Это дало существенный толчок к развитию строительной механики корабля (Ю.А.Шиманский, Г.О.Таубин, А.А.Курдюмов, Н.С.Соломенко).

Переход к более прочным сталям и соответствующее уменьшение размеров несущих связей и повышение их нагружености потребовало более детального исследования влияния концентрации напряжений в районах вырезов и окончания прерывистых связей. На основе теории Ю.А.Шиманского (“Проектирование прерывистых связей судового корпуса”, 1949г.), а также большого количества теоретических и экспериментальных работ и успешного опыта проектирования были разработаны “Положения по конструированию корпусов надводных кораблей”, 1957г. (Ю.А.Шиманский, Г.С.Чувиковский, Г.О.Таубин, Б.П.Кузовенков, Н.Л.Сивере, В.П.Белкин, А.А.Карпов).

Появление на кораблях ракетного оружия поставило перед судостроением ряд новых, нетрадиционных задач. При старте ракет на близлежащие конструкции корпуса от газовой струи ракетного двигателя действуют большие внешние давления (до 30 кгс/см2) при одновременном интенсивном тепловом воздействии (температура газовой струи 2000-4000°С), что принципиально отличает этот вид нагрузок от традиционных гидродинамических. Те же нагрузки, только более продолжительные во времени, воздействуют на конструкции погребов хранилищ ракетного оружия при несанкционированном срабатывании ракетного двигателя.

Требования, методы расчетов прочности, конструирования, а также защиты конструкций, расположенных в зоне действия газовых струй ракетных двигателей, были разработаны на основе исследования газо- и термодинамических особенностей таких струй и обобщения результатов систематических модельных и натурных испытаний (В.А.Никитин, Ю.А.Зимницкий, В.Г.Бессонов, А.А.Карпов).

В конце 50-х годов определилась необходимость создания кораблей противоминной обороны (тральщиков) водоизмещением 300-600т с корпусами из немагнитных материалов, что привело к идее использования стеклопластика. Этот материал является нетрадиционным для судостроения и обладает рядом специфических особенностей. Он создается одновременно с изготовлением конструкции, отличается существенной анизотропией механических свойств, относительно низким модулем упругости, склонностью к ползучести даже при нормальной температуре и т.д. В связи с этим необходимо было заново разрабатывать методы определения напряженно-деформированного состояния корпуса, нормы опасных и допустимых напряжений, принципы конструирования.

Первый в мире тральщик из стеклопластика водоизмещением 280 т был спущен на воду в 1964г. и вступил в строй в 1965г. Корабль находился в строю до конца 80-х годов.

В 90-е годы велись исследования по оценке ресурса кораблей, находящихся в эксплуатации более 15-20 лет, разрабатывались концепция обеспечения прочности кораблей нетрадиционной архитектуры (катамараны, корабли с малой площадью ватерлинии, корабли с усиленной ледовой защитой), комплексный подход к оценке прочности корпуса корабля по результатам мореходных испытаний и др.

Опыт создания первых отечественных КПК и экранопланов показывает, что для КДПП характерно многообразие архитектурных форм, компоновочных, конструктивных и технологических решений. Они до настоящего времени еще окончательно не установились и претерпевают значительные изменения от проекта к проекту. Расчетные методы, используемые для проверки прочности конструкций, в значительной мере носят сопоставительный характер и поэтому не могут гарантировать безопасность и ресурс конструкций при наличии нетрадиционных конструктивных и технологических решений и изменений условий эксплуатации. По этим причинам НИИ и КБ вынуждены были по примеру авиастроителей обратиться к широкому проведению экспериментальных работ для обеспечения прочности КДПП. Такой подход нашел отражение в требованиях к конструкции и прочности корпусов, разработанных под руководством Б.П.Кузовенкова в положениях по расчетно-экспериментальной проверке прочности конструкций КПК, СВП и кораблей-экранопланов (1976г.).

В 80-х годах акцент в развитии КДПП делался на создании кораблей большого водоизмещения (СВП “Зубр”, “Сивуч”). Для этого потребовалось использование новых высокопрочных материалов и решение проблем обеспечения прочности конструкций, испытывающих в эксплуатации высокие уровни напряжений.

В частности, были уточнены способы расчетного определения внешних сил, действующих на конструкции, с учетом динамики упругого пространственного деформирования конструкций (Ю.В.Бельгов, Г.Б.Крыжевич); созданы пакеты прикладных программ для расчета напряженно-деформированного состояния сложных конструкций (Е.Я.Вороненок, А.Ю.Бабурин, Е.А.Шишенин и др.); предложены новые нормы прочности и расчета конструкций, базирующиеся на теории надежности и механике разрушения (Ю.В.Головешкин, С.Д.Кноринг, Г.Б.Крыжевич, Н.И.Тузлукова); изучены особенности работы резинотканевых конструкций в эксплуатационных условиях и предложены на основе экспериментальной отработки рациональные конструктивные решения для узлов гибких ограждений больших КВП (М.В.Филиппео, М.Е.Алешин, Ю.Г.Ефимов, Д.С.Комиссаров и др.). Испытания этих кораблей и их эксплуатация подтвердили высокую надежность конструкций. По критерию весового совершенства они не уступают лучшим зарубежным, а по водоизмещению и некоторым другим параметрам превосходят их.

Вибрация

На первых цельносварных кораблях ВМФ, построенных в начале 50-х годов, вскоре после сдачи их флоту, наблюдалось массовое появление усталостных трещин в корпусных конструкциях машинных отделений и кормовой оконечности на протяжении до 1/4 длины корабля. На многих из них отмечалась также повышенная вибрация корпуса, препятствовавшая нормальной эксплуатации механизмов, точных приборов и вооружения.

Новизна возникшей проблемы и сложность физической картины происходящих при этом явлений обусловили многоплановый характер последующих исследований. С первых же шагов наметились два основных направления: исследование динамических характеристик и общей ходовой вибрации корпуса и исследование местной вибрации корпусных конструкций и обеспечение их вибрационной прочности. Для решения этих проблем требовалось прежде всего совершенствование виброизмерительной техники, создание специального оборудования, в частности, вибровозбудителей эксцентрикового типа, а также соответствующих стендов.

В результате проведенных исследований были изучены физическая природа, характер возбуждения и распространения вибрации по корпусу и его конструкциям. Для практических нужд надводного кораблестроения разработаны методы расчетного прогнозирования (на стадии проектирования корабля) уровней ходовой вибрации его корпуса, а также динамических характеристик таких корпусных конструкций, как стенки цистерн, переборок и наружной обшивки. Это потребовало создания и существенного развития общей теории вибрации корабля, основы которой были заложены академиками А.Н.Крыловым и Ю.А.Шиманским.

В работах Н.Н.Бабаева, С.Д.Дорофеюка, В.С.Чувиковского, В.Г.Лентякова, А.К.Сборовского и ряда других сотрудников ЦНИИ им.академикаА.Н.Крылова, а также специалистов 1-гоЦНИИМО Я.Ф.Шарова, В.Д.Боярского и других исследованы характеры и закономерность распространения вибрации на ряде кораблей ВМФ, разработаны методы практических расчетов общей ходовой вибрации корпуса и корпусных конструкций, принципы их рационального проектирования. Одновременно установлены нормы, ограничивающие амплитуды колебаний корпуса надводного корабля, и нормы, обеспечивающие вибрационную прочность его корпусных конструкций. Были исследованы: особенности вибрации основных типов кораблей с динамическими принципами поддержания, завершившиеся разработкой рекомендаций по расчетной оценке параметров их ходовой вибрации; вибрация крыльевых устройств КПК; разработана схема определения критической скорости флаттера. По результатам исследований составлены методика и требования к выполнению расчетов вибрации корпуса и крыльевых устройств КПК.

В обеспечение проектирования надводных кораблей с развитым авиационным вооружением исследована вибрация большепролетных палубных перекрытий этих кораблей и разработаны рекомендации по выбору их конструкций, исходя из необходимости предотвращения возможности их повышенной вибрации.

Значительное место в комплексе работ по обеспечению необходимых вибрационных качеств надводных кораблей занимали также систематически проводившиеся вибрационные испытания головных кораблей. Были спроектированы и созданы ряд виброгенераторов большой мощности для лабораторных и натурных вибрационных исследований, стенды усталостных испытаний в агрессивной среде, имитирующей морскую воду, крупногабаритных образцов различных типов сварных соединений элементов корпусных конструкций, а также вибропреобразователи повышенной чувствительности в расширенном диапазоне частот. Руководителями и основными творческими исполнителями этих работ явились Е.Н.Щукина, Э.И.Иванюта, Ю.Н.Шавров, Ю.А.Никольский, О.Н.Лычев, В.И.Поляков, Ф.П.Щуйгин и др.

Необходимость активного воздействия на уровни вибрации корпусов подводных лодок обусловливалась увеличением скоростей их подводного хода, а также предъявлением к ПЛ повышенных требований в отношении их акустической скрытности. На начальном этапе для оценки ожидаемых уровней ходовой вибрации подводных лодок в процессе их проектирования использовались методы, разработанные для надводных кораблей, откорректированные с учетом наиболее существенных отличий.

С середины 60-х годов, в связи с общей проблемой повышения акустической скрытности ПЛ, выполнялись теоретические исследования распределения амплитуд ходовой вибрации совместности по длине корпуса одно- и двухвальных лодок, необходимые для оценки параметров их гидроакустических полей в инфразвуковом диапазоне частот и влияния на параметры этой вибрации совместности колебаний системы “гребной винт-валопровод-ГУЛ-корпус”. Были спроектированы и построены вибрационные машины специально для возбуждения колебаний лодочных корпусов при их акустических испытаниях, выполнена строгая расчетная оценка величин гидродинамических сил от работы гребных винтов и разработаны рекомендации по методам и средствам снижения ходовой вибрации.

Характеристики

Тип файла
Документ
Размер
180,22 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее