783 (692951), страница 4
Текст из файла (страница 4)
Классические новые звёзды отличаются от переменных взрывных тем, что их оптические вспышки не имеют повторяющегося характера. Амплитуда кривой их блеска выражена чётче, и подъём к максимальной точке происходит значительно быстрее. Обычно они достигают максимального блеска за несколько часов, за этот период времени новая звезда приобретает звёздную величину равную примерно 12, то есть световой поток увеличивается на 60000 единиц.
Чем медленнее происходит процесс подъёма к максимуму, тем менее заметно и изменение блеска. Новая звезда недолго остаётся в положении «максимум», обычно этот период занимает время от нескольких дней до нескольких месяцев. Затем блеск начинает уменьшаться, сначала быстро, затем медленнее до обычного уровня. Длительность этой фазы зависит от разных обстоятельств, но её продолжительность составляет не менее нескольких лет.
У новых классических звёзд все эти явления сопровождаются неконтролируемыми термоядерными реакциями, происходящими в поверхностных слоях белого карлика, именно там находится «позаимствованный» водород от второго компонента звезды. Новые звёзды всегда двойные, один из компонентов обязательно – белый карлик. Когда масса компонента звезды перетекает к белому карлику, слой водорода начинает сжиматься и разогревается, соответственно температура повышается, гелий разогревается. Всё это происходит быстро, резко, в результате имеет место вспышка. Излучающая поверхность увеличивается, блеск звезды становится ярким, на кривой блеска фиксируется всплеск.
Во время активной фазы вспышки новая звезда достигает максимального блеска. Максимальная абсолютная звёздная величина составляет порядка от -6 до -9. у новых звёзд эта цифра достигается медленнее, у переменных взрывных звёзд – быстрее.
Новые звёзды существуют и в других галактиках. Но то, что мы наблюдаем, это лишь их видимая звёздная величина, абсолютную определить нельзя, так как неизвестно их точное расстояние до Земли. Хотя в принципе можно узнать абсолютную звёздную величину новой, если она находится в максимальной близости от другой новой звезды, расстояние до которой известно. Максимальная абсолютная величина высчитывается по уравнению:
M=-10.9+2.3log (t).
t – это время, за которое кривая блеска новой звезды падает до 3 звёздных величин.
Карликовые новые звёзды и повторяющиеся новые.
Ближайшими родственниками новых звёзд являются карликовые новые звёзды, их прототип «U Близнецов». Их оптические вспышки практически аналогичны вспышкам новых звёзд, но имеются различия в кривых блесках: их амплитуды меньше. Отмечаются различия и в повторяемости вспышек – у новых карликовых звёзд они случаются более или менее регулярно. В среднем раз в 120 дней, но иногда и через несколько лет. Оптические вспышки новых длятся от нескольких часов до нескольких дней, после чего за несколько недель блеск уменьшается и, наконец, достигает обычного уровня.
Существующую разницу можно объяснить различными физическими механизмами, провоцирующими оптическую вспышку. В «U Близнецов» вспышки происходят из-за внезапного изменения процентного соотношения материи на белом карлике – её увеличения. В результате имеет место огромный выброс энергии. Наблюдения за карликовыми новыми звёздами в фазе затмения, то есть когда белый карлик и диск, окружающий его, закрываются звездой – компонентом системы, точно свидетельствуют о том, что именно белый карлик, вернее, его диск является источником света.
Повторяющиеся новые звёзды представляют собой нечто среднее между классическими новыми и карликовыми новыми звёздами. Как следует из названия, их оптические вспышки повторяются регулярно, что роднит их с новыми карликовыми звёздами, но происходит это через несколько десятков лет. Усиление блеска во время вспышки более выражено и составляет около 8 звёздных величин, эта черта приближает их к классическим новым звёздам.
РАССЕЯНЫЕ ЗВЁЗДНЫЕ СКОПЛЕНИЯ.
Рассеянные звёздные скопления найти несложно. Их называют галактическими скоплениями. Речь идёт об образованиях, включающих от нескольких десятков до нескольких тысяч звёзд, большая часть которых видна невооружённым глазом. Звёздные скопления предстают перед наблюдателем как участок неба, густо усеянный звёздами. Как правило, такие области концентрации звёзд хорошо заметны на небе, но бывает, причём довольно редко, что скопление практически неразличимо. Для того чтобы определить, является какой-либо участок неба звёздным скоплением или речь идёт о звёздах, просто близко расположенных друг к другу, следует изучить их движение и определить расстояние до Земли. Звёзды, составляющие скопления, движутся в одном направлении. Кроме того, если звезды, находящиеся не далеко друг от друга, расположены на одинаковом расстоянии от Солнечной системы, они, конечно, связаны между собой силами притяжения и составляют рассеянное скопление.
Классификация звёздных скоплений.
Протяжённость этих звёздных систем варьируется от 6 до 30 световых лет, средняя протяжённость составляет примерно двенадцать световых лет. Внутри звёздных скоплений звёзды сконцентрированы хаотично, бессистемно. Скопление не имеет чётко выраженной формы. При классификации звёздных скоплений следует принимать во внимание угловые измерения, приблизительное общее количество звёзд, степень их концентрации в скоплении и разницу в блеске.
В 1930 году американский астроном Роберт Трамплер предложил классифицировать скопления по следующим параметрам. Все скопления подразделялись на четыре класса по принципу концентрации звёзд и обозначались римскими цифрами от I до IV. Каждый из четырёх классов делится на три подкласса по однородности блеска звёзд. К первому подклассу относятся скопления, в которых звёзды имеют примерно одну степень светимости, к третьему – с существенной разницей в этом плане. Затем американский астроном ввёл ещё три категории классификации звёздных скоплений по числу звёзд, входящих в скопление. К первой категории «p» относятся системы, в которых менее 50 звёзд. Ко второй «m» - скопление, имеющие от 50 до 100 звёзд. К третьей – имеющие более 100 звёзд. Например, в соответствии с этой классификацией, звёздное скопление, обозначенное в каталоге как «I 3p», представляет собой систему, состоящую менее чем из 50 звёзд, густо сконцентрированных в небе и обладающих разной степенью блеска.
Однородность звёзд.
Все звёзды, относящиеся к какому-либо рассеянному звёздному скоплению, имеют характерную черту – однородность. Это значит, что они образовались из одного и того же газового облака и сначала существования имеют одинаковый химический состав. Кроме того, есть предположение, что все они появились в одно время, то есть имеют одинаковый возраст. Существующие между ними различия можно объяснить разным ходом развития, а это определяется массой звезды с момента её образования. Учёным известно, что крупные звёзды имеют меньший срок существования по сравнения с малыми звёздами. Крупные эволюционируют значительно быстрее. В основном рассеянные звёздные скопления представляют собой небесные системы, состоящие из относительно молодых звёзд. Этот вид звёздных скоплений дислоцируется в основном в спиральных ветвях Млечного Пути. Именно эти участки являлись в недавнем прошлом активными зонами звёздообразования. Исключения составляют скопления NGC 2244, NGC 2264 и NGC6530, их возраст равен нескольким десяткам миллионов лет. Это небольшой срок для звёзд.
Возраст и химический состав.
Звёзды рассеянных звёздных скоплений связаны между собой силой притяжения. Но из-за того, что эта связь недостаточно крепкая, рассеянные скопления могут распадаться. Это происходит за длительное время. Процесс расформирования связан с влиянием гравитации одиночных звёзд, расположенных недалеко от скопления.
Старых звёзд в составе рассеянных звёздных скоплений практически нет. Хотя имеются исключения. В первую очередь это относится к крупным скоплениям, в которых связь между звёздами значительно сильнее. Соответственно, и возраст таких систем больше. Среди них можно отметить NGC 6791. В состав этого звёздного скопления входят примерно 10000 звёзд, его возраст составляет около 10 миллиардов лет. Орбиты крупных звёздных скоплений уносят их на длительный период времени далеко от плоскости галактики. Соответственно, у них меньше возможностей встретиться с большими молекулярными облаками, что могло бы повлечь за собой расформирование звёздного скопления.
Звёзды рассеянных звёздных скоплений сходны по химическому составу с Солнцем и другими звёздами галактического диска. Разница в химическом составе зависит от расстояния от центра Галактики. Чем дальше от центра расположено звёздное скопление, тем меньше элементов из группы металлов оно содержит. Химический состав также зависит от возраста звёздного скопления. Это относится и к одиночным звёздам.
ШАРОВЫЕ ЗВЁЗДНЫЕ СКОПЛЕНИЯ.
Шаровые звёздные скопления, насчитывающие сотни тысяч звёзд, имеют очень необычный вид: у них сферическая форма, и звёзды концентрируются в них настолько плотно, что даже с помощью мощнейших телескопов невозможно различить одиночные объекты. Отмечается сильная концентрация звёзд к центру.
Исследования шаровых скоплений имеет важное значение в астрофизике в плане изучения эволюции звёзд, процесса формирования галактик, изучения структуры нашей Галактики и определения возраста Вселенной.
Форма Млечного Пути.
Учёные установили, что шаровые скопления образовались на начальном этапе формирования нашей Галактики – протогалактический газ имел сферическую форму. Во время гравитационного взаимодействия до завершения сжатия, что привело к образованию диска, за его пределами оказались сгустки материи, газа и пыли. Именно из них образовались шаровые звёздные скопления. Причём они сформировались до появления диска и остались там же, где и образовались. Они имеют сферическую структуру, гало, вокруг которого позже расположилась плоскость галактики. Вот почему шаровые скопления дислоцируются симметрично в Млечном Пути.
Изучение проблемы расположения шаровых скоплений, а также проведённые измерения расстояния от них до Солнца, позволили определить их протяжённость нашей Галактики до центра – оно составляет 30000 световых лет.
Шаровые звёздные скопления по времени происхождения очень старые. Их возраст составляет 10-20 миллиардов лет. Они представляют собой важнейший элемент Вселенной, и, несомненно, знания об этих образованиях окажут немалую помощь в объяснении явлений Вселенной. По мнению учёных, возраст этих звёздных скоплений идентичен возрасту нашей Галактики, а так как все галактики сформировались примерно в одно время, значит, можно определить и возраст Вселенной. Для этого к возрасту шаровых звёздных скоплений следует прибавить время от появления Вселенной до начала образования галактик. По сравнению с возрастом шаровых звёздных скоплений это совсем небольшой отрезок времени.
Внутри ядер шаровых скоплений.
Для центральных областей этого вида скоплений характерна высокая степень концентрации звёзд, примерно в тысячи раз больше, чем в ближайших к Солнцу зонах. Только за последнее десятилетие стало возможным рассмотреть ядра шаровых звёздных скоплений, вернее, те небесные объекты, которые находятся в самом центре. Это имеет большое значение в области изучения динамики входящих в ядро звёзд, в плане получения информации о системах небесных тел, связанных силами притяжения, - звёздные скопления относятся именно к этой категории, - а также в плане изучения взаимодействия между звёздами скоплений посредством наблюдений или обработки данных на компьютере.
Из-за высокой степени концентрации звёзд происходят самые настоящие столкновения, формируются новые объекты, например звёзды, имеющие свои особенности. Могут появляться и двойные системы, это случается, когда столкновение двух звёзд не приводит к их разрушению, а происходит взаимозахват из-за гравитации.
Семейства шаровых звёздных скоплений.
Шаровые звёздные скопления нашей Галактики представляют собой неоднородные образования. Различают четыре динамичных семейства по принципу удаления от центра Галактики и по химическому составу. Некоторые шаровые скопления имеют больше химических элементов группы металлов, другие – меньше. Степень наличия металлов зависит от химического состава межзвёздной среды, из которой небесные объекты образовались. Шаровые скопления с меньшим количеством металлов – более старые, они располагаются в гало Галактики. Больший состав металла характерен для более молодых звёзд, они сформировались из среды, уже обогащённой металлами вследствие вспышек сверхновых звёзд, - к этому семейству относятся «дисковые скопления», находящиеся на галактическом диске.
В гало находятся «звёздные скопления внутренней части гало» и «звёздные скопления внешней части гало». Имеются и «звёздные скопления периферической части гало», расстояние от которых до центра Галактики наибольшее.
Влияние окружающей среды.
Звёздные скопления изучаются и подразделяются на семейства не ради классификации как самоцели. Классификация играет большую роль и при исследовании влияния окружающей звёздные скопления среды на его эволюцию. В данном случае речь идёт о нашей Галактике.