761 (692928), страница 2
Текст из файла (страница 2)
1.управление на участке предварительного торможения;
2.управление на пассивном участке;
3.управление на участке основного торможения;
-
12 -
4.управление на «верньерном» участке;
Более удобна классификация задач по функциональному назначению (рис.4).
Основной навигационной задачей является (рис.5) изме-рение навигационных параметров и определение по ним текущих кинематических параметров движения (координат и скорости), характеризующих возмущенную траекторию (орбиту) движения СА.
В задачу наведения входит определение потребных управ-ляющих воздействий, которые обеспечивают приведение СА в заданную точку пространсва с заданной скоростью и в требуе-мый момент времени, с учетом текущих кинематическихпарамет-ров движения, определенных с помощью решения навигационной задачи, заданных ограничений и характеристик объекта управ-ления.
Задачу управления можно проиллюстрировать примером -
алгоритмом управления мягкой посадкой СА на Луну. Структур-
ная схема соответствующей системы управления представлена
на рис.6
Радиодальномер измеряет расстояние r до лунной поверх-
ностивдоль определенного направления, обычно совпадающего с
направлением продольной оси СА. Доплеровский локатор дает
информацию о текущем векторе скорости снижения V, инерци-
альные датчики измеряют вектор Q углового положения СА, а
-
13 -
также вектор кажущегося ускорения V.
Результаты измерений поступают на выход управляющего устройства, в котором составляются оценки координат, харак-теризующих процесс спуска (в частности, высоты СА над по-верхностью Луны), и формируются на их основе управляющие сигналы U , U , U , обеспечивающие терминальное управление мягкой посадкой (O - связанная система координат СА). При этом U , U задают ориентацию продольной оси СА (и, следова-тельно, тяги двигателя) и используюся как уставки для рабо-ты системы стабилизации, а управляющий сигнал U задает те-кущее значение тяги тормозного двигателя.
В результате обработки сигналов U , U , U , тормозным двигателем и системой стабилизации полет СА корректируется таким образом, чтобы обеспечить выполнение заданных терми-нальных условий мягкой посадки. Конечная точность поссадки считается удовлетворительной, если величина вертикальной составляющей скорости в момент контакта с поверхностью пла-неты не вызывает допустимой деформации конструкции СА, а горизонтальная составляющая скорости не приводит к опроки-дыванию аппарата.
Задачи ориентации и стабилизации как задачи управления СА относительно центра масс формулируется следующим обра-зом:
1.совмещение осей спускаемого аппарата (или одной оси) с
-
14 -
осями (или осью) некоторой системы координат, называемой базовой системой отсчета, движение которой в пространстве известно (задача ориентации);
2.устранение неизбежно возникающих в полете малых угло-вых отклонений осей космического аппарата от соответствую-щих осей базовой системы отсчета (задача стабилизации).
Заметим, что весь полет СА разбивается, по существу, на два участка: активный (при работе маршевого двигателя); пассивный (при действии на СА только сил гравитационного характера).
Решения перечисленных задач (навигации и наведения, ориентации и стабилизации) на активных и пассивных участках имеют свою специфику.
Например, процесс управления полетом на пассивных участках характеризуется , как правило, относительной мед-ленностью и большой дискретностью приложения управляющих воздействий.
Совершенно иным является процесс управления полетом на активном участке, например, при посадке на Луну. Непрерыв-но, начиная с момента включения тормозного двигателя,на борту решается навигационная задача: определяются текущие координаты СА и прогнозируются кинематические параметры движения на момент выключения двигателя.
Так же непрерывно вычисляются и реализуются необходи-
-
15 -
мые управляющие воздействия (момент силы) в продольной и поперечной плоскости наведения. Процесс управления на этом этапе характеризуется большой динамичностью и,как правило, непрерывностью. В некоторых случаях задача наведения может решаться дискретно,причем интервал квантования по времени определяется требованиями к динамике и точности наведения.
Для решения перечисленных задач система управления по-летом СА последовательно (или параллельно) работает в режи-мах ориентации, стабилизации, навигации и наведения. Приборы и устройства, обеспечивающие выполнение того или иного режима управления и составляющие часть всего аппара-турного комплекса системы управления, обычно называют сис-темами навигакции, наведения, ориентации и стабилизации.
Наиболее часто на практике системы, управляющие движе-нием центра масс космического корабля, называют системами навигации и наведения, а системы, управляющие движением космического корабля относительно центра масс,- системами ориентации и стабилизации.
КОМПОНОВОЧНАЯ СХЕМА И УСТОЙЧИВОСТЬ СА.
Устойчивость - важнейшее свойство, которым должен об-ладать СА во время всех эволюций при посадке на планету.
Проблема обеспечения устойчивости, как известно, общая
-
16 -
проблема для всех движущихся объектов, в каждом конкретном случае решаемая, однако, по-разному. И в данном случае, применительно к СА, она также имеет свою специфику.
Дело в том, что жидкое топливо, питающее ракетный дви-гатель во время его работы, колеблется (в силу наличия слу-чайных возмущений). Воздействуя на корпус СА, эти колебания порождают колебания СА в целом.
Чувствительные элементы(гироскопы) реагируют на коле-бания корпуса и включают, в свою очередь соответствующие исполнительные органы (рули), тем самым формируя замкнутую колебательную систему спускаемый аппарат - автомат стабили-зации (СА - АС).
При определенных условиях, в значительной степени за-висящих от « совершенства» компоновки СА, могут возникнуть нарастающие колебания корпуса СА, приводящие в конечном счете к его разрушению.
Характерным здесь является то, что корни неустойчивос-ти лежат именно в особенностях компоновочной схемы СА, что влечет за собой необходимость самого тщательного исследова-ния этих особенностей (рис.7).
Использование жидкостного ракетного двигателя для обеспечения мягкой посадки СА порождает, как видно, ряд проблем, связанных с обеспечением его устойчивости.
Займемся одной из них, а именно - исследованием роли
-
17 -
конструктивных параметров компоновочной схемы СА в формиро-вании динамических свойств СА как управляемой системы.
Управление СА относительно центра масс в плоскостях тангажа и рыскания осуществляется специальным автоматом стабилизации путем создания управляющих моментов при целе-направленном включении управляющих двигателей. Возможны и другие схемы управления, например, путем перераспределения тяг управляющих двигателей или отклонения маршевого двига-теля (газового руля).
Что касается топливных баков, то они обычно выполняют-ся в виде тонкостенных оболочек различной геометрической конфигурации (обычно осесимметричной) и размещены внутри СА.
Какими параметрами желательно характеризовать ту или иную компоновочную схему с тем, чтобы формализовать даль-нейший анализ? С точки зрения динамики представляют инте-рес те, которые в первую очередь характеризуют: форму и расположение топливных баков; положение центра масс СА; по-ложение и тип управляющих органов; соотношение плотностей компонентов топлива; «удлинение» (т.е. отношение высоты к диаметру) СА.
Будем предполагать, что траектория посадки СА выбрана
(и является оптимальной в том или ином смысле). Есть также
(или формируется в процессе полета) программа работы марше-
-
18 -
вого двигателя. Все это однозначно определяет упомянутые выше параметры компоновочной схемы СА в каждый момент вре-мени активного участка.
Этих предположений достаточно для формализации обсуж-даемой проблемы - исследования влияния особенностей компо-новки СА на его устойчивость.
Однако задача стабилизации СА при посадке на планеты, лишенные атмосферы, включающая в себя анализ динамики объ-екта, исследование причины неустойчивости и методов ее устранения, не допускает полной формализации и требует прив-лечения диалоговой технологии исследования.
Для построения такой технологии необходимо начать с анализа основных факторов, определяющих в конечном счете структуру диалога «человек - ЭВМ», а именно: особенностей СА как механической системы; особенностей его математичес-ких моделей; своеобразия методов исследования этих моделей.
Спускаемый аппарат как механическая система представ-ляет собой тонкостенную (частично ферменную) конструкцию, снабженную тормозным устройством - жидкостным ракетным дви-гателем - и необходимой системой стабилизации.
Важной особенностью компоновочной схемы СА является наличие в конструкции топливных отсеков (с горючим и окис-лителем) различной геометрической конфигурации.
Стабилизация СА относительно центра масс осуществляет-
-
19 -
ся специальным автоматом стабилизации путем создания управ-ляющих моментов за счет отклонения управляющих двигателей, маршевого двигателя или газовых рулей.
В процессе движения СА жидкость в отсеках колеблется, корпус аппарата испытывает упругие деформации, все это по-рождает колебания объекта в целом.
Чувствительные элементы (гироскопы) и исполнительные элементы (рули) замыкают колебательную систему спускаемый аппарат - автомат стабилизации и рождают весь комплекс воп-росов, связанный с обеспечением устойчивости системы в це-лом.
Движение СА мы представляем себе как «возмущенное» движение, наложенное на программную траекторию. Термин «ус-тойчивость» относится именно к этому возмущенному движению.
Уместно заметить, что выбор модели представляет собой хороший пример неформализуемой процедуры: без участия разработчика он в принципе невозможен.
Какими соображениями руководствуется инженер при выбо-ре моделей?
Прежде всего ясно, что не имеет смысла перегружать расчетную модель различными подробностями, делая ее неоп-равданно сложной. Поэтому представляются разумными следую-щие соображения.
Для анализа запасов статистической устойчивости объек-
-
20 -
та можно ограничиться моделью твердого жесткого тела.
При выборе же характеристик устройств, ограничивающих подвижность жидкости в отсеках, необходимо уже учитывать волновые движения на свободной поверхности жидкости как ис-точник возмущающих моментов.
Выбор рационального размещения датчиков системы стаби-лизации объекта приходится делать с учетом упругости.
Некоторые методы, используемые при анализе процессов стабилизации, связаны с анализом динамических свойств объ-екта в некоторый фиксированный момент времени. Для получе-ния интегральных характеристик объекта в течение небольшого интервала времени или на всем исследуемом участке использу-ются геометрические методы, связанные с построением в пространстве областей устойчивости, стабилизируемости спе-циальным образом выбранных параметров (как безразмерных, так и размерных). Эти методы также позволяют длать ответ на вопрос, насколько велик запас устойчивости или стабилизиру-емости, и помогают выяснить причины возникновения неустой-чивости.
Существует еще группа методов обеспечения устойчивости СА, включающая в себя:
1) рациональный выбор структуры и параметров автомата стабилизации ;
2) демпфирование колебаний жидкости в отсеках с по-
-
21 -
мощью установки специальных устройств;
3) рациональный выбор компоновочной схемы объекта (пе-рекомпоновка), с одновременной настройкой параметров АС или с принципиальным изменением его структуры.
Обратимся теперь собственно к термину «технология ре-шения» проблемы. Под этим термином мы будем понимать набор комплексов отдельных подзадач, на которые разбивается об-суждаемоая задача, математических методов и соответствующих технических средств для их реализации, процедур, регламен-тирующих порядок использования этих средств и обеспечивающих решение задачи в целом.
Конечной целью проектных разработок по динамике СА яв-ляется обеспечение его устойчивости на участке посадки. Этой задаче подчинены все другие, в том числе и задача ана-лиза структурных свойств СА как объекта регулирования (по управляемости, наблюдаемости, стабилизируемости).
Так как устойчивость - это то, что в конечном счете
интересует разработчиков (и заказчиков), то с этой задачи
(в плане предварительной оценки) приходится начинать в про-
цессе исследования, ею же приходится и завершать все разра-
ботки при окончательной доводке параметров системы стабили-
зации. При этом меняется лишь глубина проработки этого воп-
роса: на первом этапе используются сравнительно грубые мо-