725 (692890), страница 2

Файл №692890 725 (Планеты-гиганты) 2 страница725 (692890) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Как и на Юпитере, на Сатурне видны темные полосы, расположенные параллельно экватору. Так же как и для Юпитера, для Сатурна характерна разная скорость вращения для зон с различными широтами. Правда, полосы на диске Сатурна более стойкие и количество деталей меньше, чем у Юпитера.

СПУТНИКИ ПЛАНЕТ-ГИГАНТОВ И ПЛУТОН

Итак, мы познакомились в общих чертах с семейством планет, близких к нашему светилу. Среди другого се­мейства, расположенного за астероидным поясом, ни одна из четырех больших планет не обладает твердой по­верхностью в обычно понимаемом значении этого слова, о чем мы уже упоминали выше. Что же касается Плутона, то мы видели, что его никак нельзя относить к большим планетам ни по размерам, ни по ряду других характе­ристик. Скорее он напоминает крупный астероид (или же систему из двух астероидов), поэтому некоторые ис­следователи вообще не склонны считать его планетой. Но и само семейство больших планет включает в себя много твердых тел. Это их спутники, охватывающие ши­рокий диапазон размеров — от сопоставимых с планета­ми земной группы до небольших астероидов.

К сожалению, сведения о большинстве этих тел, осно­ванные на наземных наблюдениях, весьма ограничены. Касается это в первую очередь самых внешних спутни­ков Юпитера, Сатурна и Нептуна, обладающих наиболь­шими наклонениями и эксцентриситетами орбит. При­мерно четверть из них обращается вокруг своих планет не в прямом, а в обратном направлении. Уже сам этот факт определенно указывает на то, что эти спутники, вероятно, представляют собой захваченные астероиды, имеющие неправильную форму, и что основные черты их поверхностей не претерпели заметных изменений после захвата (за исключением возможно более интенсивной бомбардировки при нахождении в окрестности крупного гравитирующего тела). В то же время природа других, особенно близких к планете больших спутников, скорее всего, является иной, тесно связанной с периодом форми­рования самой планеты.

Можно предположить, что при очень низких темпера­турах конденсации во внешних областях Солнечной сис­темы и при сравнительно малых размерах этих тел зна­чительная часть слагающего вещества представляет собой водяной, метановый и аммонийный лед, который во многих случаях должен обнаруживаться на поверхно­сти. Наиболее вероятным кажется наличие водяного льда вследствие его большого содержания в Солнечной системе, а также более высокой стабильности по срав­нению с аммонийным и метановым льдом.

Что же наблюдается на самом деле? Водяной лед дей­ствительно был обнаружен на трех из четырех галилеевых спутников Юпитера и на шести спутниках Сатурна. Основой для этого вывода послужили спектры отраже­ния галилеевых спутников в сопоставлении со спектром льда из Н2О, которые показали, что характерные признаки ледяного поглощения особенно четко присутствуют в спектрах Европы и Ганимеда, в значительно меньшей степени они проявляются у Каллисто, а у Ио вообще отсутствуют. Это привело к представлениям о су­щественных различиях поверхностей этих тел и разных путях их тепловой эволюции.

Аналогичная ситуация наблюдается у спутников Са­турна, Покрытые водяным льдом поверхности (а неко­торые — возможно и целиком ледяной состав) имеют все спутники внутри орбиты Титана — Янус, Мимас, Энцелад, Тефия, Диона, Рея. На других спутниках Сатурна, а также спутниках Урана и Нептуна, каких-либо свидетельств присутствия водяного или обра­зующегося при еще более низких температурах конден­сации аммиачного или метанового льда не найдено. У них низкая отражательная способность, что сближает характеристики их поверхностей. Это спутники Сатурна Гиперион и Феба, спутники Урана Титания и Оберон, спутник Нептуна Тритон. В то же время для спут­ника Сатурна Япета характерно то, что у него одна сторона (в направлении движения по орбите) светлая, с высокой отражательной способностью, а противополож­ная сторона темная. Приемлемого объяснения такой асимметрии пока не найдено.

К сожалению, ничего не известно о поверхности са­мого большого спутника Сатурна — Титана, по размерам превышающего Меркурий. Объясняется это тем, что изу­чению отражательных свойств его поверхности мешает атмосфера. Предполагали, что поверхность Титана может состоять из водяного или метанового льда. Выдвига­лась гипотеза, согласно которой она может быть покрыта густой органической массой. В основе последней лежали результаты лабораторных исследований, показавшие, что в метаново-водородных атмосферах под воздействием ультрафиолетового излучения образуются сложные угле­водороды — такие, как этан, этилен и ацетилен. Как здесь не вспомнить существовавшие еще в 50-х годах нашего столетия близкие к этим представления о поверх­ности Венеры: ведь и на ней предполагалось обилие угле­водородов, моря нефти и даже пышная растительность. К сожалению, реальность уже не раз опровергала экзо­тические ожидания; очевидно, не будет исключением и Титан с его недавно открытой холодной азотной атмосферой.

В отличие от спутников планет-гигантов, у Плутона отождествлены спектральные признаки метанового конденсата. По результатам узкополосной фотометрии отношение интенсивности отражения в двух спектраль­ных областях, в одной из которых расположены полосы поглощения водяного и аммиачного льда, а в другой — сильная полоса поглощения метанового льда, оказалось равным 1,6. Если взять чистый метановый лед и снять те же спектры в лаборатории, то отношение оказывается лишь немного больше, в то время как для спутников гигантов с признаками водяного льда на поверхности это отношение существенно меньше единицы. Это явля­ется довольно сильным аргументом в пользу наличия ме­тана. Обнаружение метанового льда на Плутоне меняет существовавшие до недавнего времени представления о его поверхности, образованной скальными породами, в сторону более реальных предположений о покрываю­щем ее протяженном ледяном слое.

СОСТАВ И СТРОЕНИЕ СПУТНИКОВ ПЛАНЕТ-ГИГАНТОВ

В предыдущей главе мы уделили много внимания спутникам планет-гигантов, рассказам о свойствах их поверхностей. Одновременно затрагивались проблемы внутреннего строения и эволюции их недр, ключом к ре­шению которых служат наблюдаемые поверхностные структуры. Особый интерес представляют галилеевы спутники Юпитера, на поверхностях которых, как мы видели, обнаружен целый ряд уникальных особенностей, а средняя плотность падает с ростом расстояния от Юпи­тера от 3,53 г/см3 для Ио до 1,79 г/см3 для Каллисто. Изменение плотности естественно отражает различия в составе слагающих эти спутники пород. Рас­четные модели их внутренней структуры еще до полетов космических аппаратов «Вояджер» привели к представ­лениям о том, что Ио и Европа почти целиком состоят из вещества горных пород, в то время как у Ганимеда и Каллисто из них сложены только центральные части (ядра), а внешние оболочки образованы водяным или водно-аммонийным льдом. Нужно сказать, что эти пред­положения в своих основных чертах оправдались, но, конечно, сейчас мы узнали об этих небесных телах не­сравненно больше.

В первую очередь это касается спутника Ио, о кото­ром думали, что он потерял воду в отдаленную эпоху вследствие максимального разогрева за счет радиоген­ного тепла в его недрах, сложенных силикатными поро­дами. Действительно, для тела таких размеров, как Ио, любой реально допустимый запас долгоживущих радио­изотопов должен был исчерпаться в сравнительно ран­ний период тепловой эволюции; на других галилеевых спутниках роль внутренних источников тепла также не­эффективна. Тем удивительнее было обнаружение на Ио исключительно сильной вулканической активности в со­временную эпоху. На ее вероятный источник указали известный американский планетолог С. Пил и его со­трудники, опубликовавшие свою работу буквально за несколько месяцев до пролета первого «Вояджера»! Сей­час это предположение, подкрепленное эксперименталь­ными фактами, кажется наиболее правдоподобным. При­чиной вулканической деятельности на Ио следует, оче­видно, считать приливный разогрев его недр. Дело в том, что под влиянием притяжения Европы и Ганимеда возникают возмущения эксцентриситета синхронной ор­биты Ио вокруг Юпитера, что вызывает изменения амп­литуды постоянных крупномасштабных приливов. Рас­четы показали, что энерговыделение вследствие прилив­ной деформации этого спутника достаточно, чтобы рас­плавить большую часть его недр. Полагают, что в настоя­щее время у Ио сохранилась лишь очень тонкая твердая кора толщиной в 20—30 км, которая пульсирует вместе с приливами и отливами. Регулярно генерируемое тепло служит источником интенсивных извержений, непре­рывной вулканической деятельности. Очевидно, если бы на месте Ио оказался другой объект, сложенный в ос­новном льдом, то из-за быстрой потери легколетучих элементов от него бы очень скоро ничего не осталось. Возможно, что таким путем исчезали ледяные тела, ис­пытавшие аналогичные эффекты вблизи Юпитера или других планет-гигантов.

Модель приливных возмущений, предложенная для Ио, предсказывает наличие небольшого разогрева также для соседней с ним Европы. Количественно этот эф­фект должен быть примерно на порядок меньше, одна­ко и в этом случае он достаточен для того, чтобы под­держивать внутреннюю активность ее недр. Отражением этой продолжающейся тепловой эволюции, очевидно, слу­жит грандиозная сетка трещин на удивительно гладкой поверхности льда, обусловленная тектоническими про­цессами. Европа приблизительно на 20% по массе со­стоит из водяного льда, сосредоточенного в толстой (≈100 км) коре и водно-ледяной мантии (шуге) протя­женностью в несколько сот километров.

Ганимед и Каллисто, судя по близким значениям их плотности (1,9 г/см3 и 1,8 г/см3), уже почти на 50% со­стоят из водяного льда. Вместе с тем различия поверх­ностей этих двух тел говорят о том, что их эволюция шла различными путями, зависившими на ранней ста­дии от обилия радиоактивных источников разогрева. На Ганимеде, при большем содержании силикатов, они были более эффективны, что обусловило более полную диф­ференциацию вещества и образование менее тонкого ледяного покрова у поверхности. У Ганимеда предпола­гается, таким образом, несколько большее по массе, чем у Каллисто, силикатное ядро, водно-ледяная мантия (воз­можно со слабыми внутренними конвективными движе­ниями) и ледяная кора. В то же время Каллисто, види­мо, обладает наиболее толстой ледяной корой и содер­жит наибольшее количество воды среди всех галилее­вых спутников, причем в его водно-ледяной мантии, ве­роятно, сохранились значительные включения скаль­ных пород.

О внутреннем строении других спутников гигантов известно еще меньше. Более или менее обоснованные предположения опираются на спектрофотометрические характеристики их поверхностей, хотя эти сведения, к сожалению, довольно ограничены. Теоретические моде­ли внутреннего строения строились Д. Льюисом, исхо­дя из допущений о равновесной или неравновесной кон­денсации вещества протопланетной туманности. Было по­казано, что при температурах конденсации ниже 160°К образуются тела, состоящие из вещества углистых хондритов и водяного льда примерно в равном соотношении, если процесс аккумуляции протекает настолько медлен­но, чтобы поддерживалось химическое равновесие с ок­ружающим газом. В случае же быстрой конденсации условия равновесия не обеспечиваются и образуются от­дельные слои, химически не взаимодействующие друг с другом. Такое тело будет иметь ядро, обладающее наи­большей плотностью и окруженное мантией, состоящей из водяного льда и аммонийных гидросульфидов, а так­же кору из аммонийного льда. В обоих вариантах ак­кумуляции плотность образующихся тел оказывается приблизительно одинаковой, не сильно отличающейся от плотности водяного льда. Для больших тел, таких, как Титан, предполагаемая плотность выше (1,5—1,9 г/см3) за счет несколько большей фракции силикатов в сла­гающем их веществе.

От состава должен непосредственно зависеть и ход тепловой эволюции твердых тел во внешних областях Солнечной системы, что предопределяется различной температурой плавления слагающих их льдов. Расчеты показали, что тела, состоящие из вещества углистых хондритов и водяного льда, будут проходить стадию расплавления и медленной дифференциации только при ус­ловии, если их радиус превышает 1000 км. Если же в состав слагающего вещества входят аммонийные соеди­нения, расплавление будет иметь место и для тел мень­ших размеров. Поэтому, если радиус таких спутников не менее 700 км, они будут дифференцироваться с выделением силикатного ядра, мантии, состоящей из во­дяного и растворов водно-аммонийного льда, и ледяной коры толщиной в несколько сот километров. Здесь мож­но усмотреть определенную аналогию с Ганимедом и Каллисто, исключая примесь аммонийных соединений. В целом такая структура, видимо, более характерна для сопоставимого с ними по размерам Титана. Можно пред­полагать, что у таких крупных тел происходит более полное расплавление вследствие выделения гравитаци­онной энергии дифференциации.

К таким телам непосредственно примыкает и Плутон, на котором, вероятно, происходили менее активные про­цессы. В рамках моделей равновесной конденсации из протопланетной туманности при температуре около 40 К это тело, очевидно, аккумулировалось преимущественно из метанового льда, и слагающее его вещество не пре­терпело в дальнейшем заметной дифференциации. Дру­гая возможность — формирование из гидратов метана (CH4-8H2O) при температурах конденсации ≈70К, с последующим их разложением в процессе внутренней эволюции, дегазацией СН4 и образованием метанового льда на поверхности. Отождествление его в спектре от­ражения Плутона благоприятствует обеим этим моде­лям, не позволяя, однако, сделать между ними выбор. При этом для любой из них средняя плотность планеты оказывается не выше 1,2 г/см3, а альбедо не менее 0,4, что соответственно уменьшает вероятный диаметр Плу­тона до размеров Луны, а массу ограничивает несколь­кими тысячными долями от массы Земли.

Список используемой литературы

1. М.Я. Маров. Планеты солнечной системы

2. И.К. Ковалев. Мир планет

3. Ф.Л. Уилл. Семья Солнца

Характеристики

Тип файла
Документ
Размер
74,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее