25268-1 (692735), страница 2
Текст из файла (страница 2)
В соответствии с учебным планом курса “Электронные, квантовые приборы и микроэлектроника” студент обязан выполнить контрольную работу, ответить на контрольные вопросы, выполнить лабораторный практикум и сдать экзамен. К сдаче экзамена студент допускается при предъявлении экзаменатору выполненных и зачтенных контрольных работ.
Основной формой изучения курса является самостоятельное изучение рекомендованной литературы. Очные виды занятий являются дополнительной формой в помощь самостоятельной работе студентов по изучению курса.
Кафедра рекомендует вести краткий конспект изучаемого учебного материала. После изучения каждого раздела необходимо ответить на контрольные вопросы и выполнить контрольные задания. На два контрольных вопроса (по разделу II – один) из каждого раздела (согласно шифра, см. задачу № 1 контрольного задания) ответы следует дать в письменной форме.
В приведенных ниже методических указаниях даются ссылки на основные литературы [, 2. Однако, для изучения программы курса можно пользоваться и списком дополнительной литературы.
Дополнительной литературой можно также пользоваться для более углубленного изучения отдельных пунктов или разделов программы или в случае отсутствия книг основной литературы.
Методические указания по разделам курса
Раздел 1. Полупроводниковые приборы
1 Электрические свойства полупроводников
1, с. 29-42;
В этом пункте рассматриваются физические основы полупроводников. Нужно вспомнить основные положения квантовой механики из курса физики: основы зонной теории, статистика Ферми-Дирака, уровень Ферми и его зависимость от концентрации примесей в полупроводниках и температуры. Следует уяснить способы построения энергетических уровней собственных и примесных полупроводников. Нужно различить диффузионный и дрейфовый токи.
2 Физические процессы в электронно-дырочных переходах и контактах
, с. 42-55;
Материал этого пункта надо тщательно изучить, так как он является чрезвычайно важным для понимания работы всех полупроводниковых приборов. Необходимо изучить свойства p-n переходов, их энергетические и потенциальные диаграммы.
Надо знать уравнение вольтамперной характеристики, отличие теоретической характеристики от реальной, виды пробоев p-n перехода. Изобразить эквивалентную схему p-n перехода и дать физическое объяснение наличия барьерной и диффузионной емкостей перехода.
Необходимо знать принцип действия контакта металл-полупроводник (барьер Шотки).
3 Полупроводниковые диоды
[1], c. 56-92;
4 Биполярные транзисторы
[1], c. 93-175;
5 Полевые транзисторы
[1], с. 183-211.
Надо усвоить устройство и принцип действия полевых транзисторов с управляемым p-n переходом, знать их статическое характеристики и дифференциальные параметры.
Следует разобраться с принципом действия, структурой и особенностями полевых транзисторов с изолированными затворами (МДП-транзисторы), их разновидностями; МДП с индуцированным и встроенным каналами. Необходимо знать режимы обеднения и обогащения этих транзисторов и какие из них могут работать в том или ином режиме. Все это необходимо проиллюстрировать на физике процессов, а также с помощью статических характеристик транзисторов.
Следует знать схемы включения, дифференциальные малосигнальные параметры и эквивалентные схемы полевых транзисторов.
Необходимо иметь представление о приборах с зарядовой связью.
Этот материал можно найти в [4].
6 Различные полупроводниковые приборы
[1], c.175-182;
В этом пункте основное внимание уделяется устройству тиристоров. Нужно знать устройство и принцип действия диодного и триодного тиристора. Нужно также уяснить работу теплоэлектрических приборов, полупроводниковых резисторов и варисторов.
Шумы и надежность электронных приборов [1], с. 158-165, 19-22;
Контрольные вопросы к I-разделу
Укажите роль электронных приборов и изделий микроэлектроники в подготовке специалистов Вашего профиля.
Начертите диаграммы энергетических зон собственного и примесного полупроводников и объясните характер электропроводности в полупроводниках.
Что такое диффузионный и дрейфовый токи?
Почему резко снижается концентрация подвижных носителей заряда в приконтактной области двух полупроводников с разными типом проводимости?
Начертите потенциальную диаграмму (или диаграмму энергетических уровней) p-n перехода в равновесном состоянии.
Начертите потенциальную диаграмму (или диаграмму энергетических уровней) p-n перехода при прямом включении.
Начертите потенциальную диаграмму (или диаграмму энергетических уровней) p-n перехода при обратном включении.
Чем отличается реальная вольтамперная характеристика p-n перехода от теоретической?
Какие виды пробоя p-n перехода вы знаете?
Что такое зарядная емкость p-n перехода?
Что такое диффузионная емкость p-n перехода?
Дайте классификацию полупроводниковых приборов по технологии изготовления и по типу структуры.
Как называются приборы, основанные на контакте металл-полупроводник?
Дайте классификацию диодов по конструктивным особенностям и применению.
Каково устройство и принцип действия полупроводникового диода?
Объясните устройство стабилитрона и его включение в схему.
Каковы особенности работы диодов в импульсном режиме?
Дайте классификацию транзисторов по конструкции и их применению.
Начертите схемы включения транзистора с общей базой, с общим эмиттером и с общим коллектором?
В чём заключается особенности режимов: активного, отсечки и насыщения?
Расскажите принцип действия биполярного транзистора.
Дайте сравнение усилительных свойств транзисторов в разных схемах включений.
Изобразите статистические характеристики транзисторов и объясните ход их изменения.
Какие системы параметров транзисторов Вам известны и какая связь между ними?
Изобразите эквивалентные низкочастотные Т-образные схемы транзистора.
Что такое предельная частота, граничная частота усиления тока базы?
Нарисуйте диаграмму коллекторного тока при импульсном режиме работы.
Каков принцип действия полевого транзистора с управляющим p-n переходом?
Нарисуйте схему устройства транзистора с изолированным затвором и объясните его принцип действия.
Изобразите три схемы включения полевого транзистора. Нарисуйте семейство статических (выходных и передаточных) характеристик.
Что такое прибор с зарядовой связью?
Объясните принцип действия динистора.
Объясните вольтамперную характеристику динистора.
Назовите параметры тиристоров.
Объясните принцип действия полупроводниковых резисторов, варисторов.
Объясните принцип действия датчика Холла.
Назовите виды шумов в транзисторе.
Как определяется долговечность прибора?
Что такое интенсивность отказов?
Как влияет режим на надежность полупроводниковых приборов?
Раздел II. Оптоэлектронные и квантовые приборы
[1], с, 313-327, 356-371;
Данная тема является одним из перспективных направлений развития электроники. Поэтому необходимо уяснить достоинства оптоэлектронных приборов вообще, и оптронов в частности. Краткие сведения по оптронам можно найти в [1] и [4], по индикаторам в [1]. Более полные сведения по ним можно найти в дополнительной литературе [9].
Контрольные вопросы по разделу II
Основные достоинства оптоэлектронных приборов.
Устройство оптрона и основные его узлы.
Светоизлучатели. Основные требования к ним.
Светодиоды. !принцип цействия, характеристики, параметры.
Оптическая среда. назначение, требования к ней.
Фотоприемники. Характеристики и параметры.
Принцип действия фоторезистора, Характеристики и параметры.
Принцип действия и устройство Фотодиода. Фотогенераторный
режим.
Фотопреобразовательный режим фотодиода.
Способы повышения коэффициента передачи тока оптронов.
Фототранзисторы и фототиристоры. Принцип работы и выходные характеристики,
Классификация оптронов. Условные обозначения.
Сравнительная характеристика.
Характеристики оптронов.
Параметры оптронов.
Применение оптронов.
Принцип действия полупроводниковых индикаторов
Жидкокристалические индикаторы. Принцип действия и разновидности.
Газоразрядные индикаторы и плазменные панели.
Применение индикаторов.
Полупроводниковые лазеры. Принцип действия, характеристики и особенности.
Раздел III. Микроэлектроника
1 Технологические основы микроэлектроники
Средством решения проблемы увеличения надежности, снижения стоимости, массогабаритных показателей и энергопотребления РЭА является комплексная миниатюризация, в широком смысле означающая системный подход к применению в аппаратуре средств микроэлектроники, а в прикладном смысле – метод создания аппаратуры, при котором все ее узлы, блоки и устройства выполнены на базе изделий микроэлектроники. Следует уяснить, что основная задача микроэлектроники – решение вопросов надежности микроэлектронных устройств, состоящих из большого количества элементов. Это и есть – «Тирания большого количества».
Классификация изделий микроэлектроники приведена в [2, с.27-32].
Основным видом изделий микроэлектроники являются ИМС, которые могут быть квалифицированы по технологии изготовления, степени интеграции, функциональному назначению и по применяемости в аппаратуре. Подробно см. [2, с. 23-38].
Базовые технологические процессы изготовления полупроводниковых ИМС (эпитаксия, термическое окисление, диффузия, ионное легирование, фотолитография, металлизация) достаточно полно и компактно описаны в [2, с. 55-78]. Усвойте назначение каждого из базовых процессов, а также умейте без излишней детализации объяснить их сущность.
Основу биполярных полупроводниковых ИМС составляют n-p-n транзисторы. Отличия параметров и характеристик интегрального n-p-n транзистора от дискретного определяются расположением всех трех выводов на одной поверхности, а также влиянием подложки. Обратите внимание на способы улучшения параметров интегрального n-p-n транзистора, в частности, введение скрытого n-слоя.
Диоды полупроводниковых ИМС реализуются на основе n-p-n транзисторов, причем их параметры зависят от схемы включения транзистора в качестве диода.
Весьма важно для понимания принципов построения современных полупроводниковых цифровых ИМС разобраться с устройством и особенностями активных структур, не имеющих дискретных аналогов: многоэмиттерных и многоколлекторных транзисторов, транзисторов с барьером Шотки.
Обратите внимание на проблему реализации p-n-p транзисторов на одной подложке с основными n-p-n транзисторами, поймите отличия горизонтального и вертикального p-n-p транзисторов. Такие элементы наряду с супербета-транзисторами широко используются в полупроводниковых ИМС. Все перечисленные элементы ИМС подробно описаны в [2, с. 89-103].
В МДП ИМС используются структуры с одним типом кандалов (n-МДП, p-МДП) или двумя типами каналов (комплементарные, КМДП). Необходимо ясно понимать, что важным преимуществом МДП ИМС по сравнению с биполярными ИМС является упрощение технологии изготовления и соответственно больший процент выхода годных изделий и меньшая стоимость. МДП активные элементы занимают значительно меньшую площадь на подложке и позволяют реализовать ИМС с очень высокой степенью интеграции при малой потребляемой мощности. Обратите внимание на устройство и особенности КМДП ИМС, являющихся в настоящее время одним из наиболее перспективных типов ИМС. Данные вопросы достаточно кратко и понятно рассмотрены в [2, с. 103-112, 138-145].
Параметры и характеристики пассивных элементов полупроводниковых ИМС (диффузионных и ионно-легированных резисторов, диффузионных и МДП конденсаторов) существенно отличаются от соответствующих параметров и характеристик дискретных резисторов и конденсаторов.
Необходимо знать порядок температурных коэффициентов сопротивлений и емкостей пассивных элементов полупроводниковых ИМС, их основные отличия от дискретных пассивных компонентов и уметь изобразить простейшие модели (эквивалентные схемы), учитывающие паразитные эффекты. Особое внимание уделите МДП конденсаторам, широко используемым в самых новейших разработках дискретно-аналоговых МДП БИС. Следует также понимать, что, несмотря на большой разброс номиналов полупроводниковых резисторов и конденсаторов, отношения номиналов в пределах кристалла выдерживаются с достаточно высокой точностью (0,5...3%). Пассивные компоненты полупроводниковых ИМС подробно описаны в [2, с.116-127]. При изучении элементов полупроводниковых ИМС усвойте способы изоляции между ними и их особенности.
Способ изоляции элементов в полупроводниковых ИМС, выполненных на основе биполярных структур, во многом определяет как предельно достижимые параметры и характеристики ИМС, так и последовательность технологических операций при их изготовлении. Следует понимать, что в полупроводниковых ИМС на МДП структурах изоляция между элементами не требуется.
Известные способы изоляции между элементами разделяются на два главных типа: изоляция обратно смещенным p-n переходом и изоляция диэлектриком.
Гибридные интегральные микросхемы (микросборки) представляют собой комбинацию пленочных пассивных элементов и дискретных активных компонентов, расположенных на общей диэлектрической подложке. В настоящее время в качестве дискретных активных элементов, кроме бескорпусных транзисторов и диодов, широко используют полупроводниковые ИМС различной степени интеграции, в частности, операционные усилители, триггеры, регистры и т.д. Таким образом, гибридные ИМС представляют собой не только функциональные узлы (усилители, звенья фильтров и т.д.), но и целые блоки устройства РЭА. Аналогом гибридной ИМС в МЭА третьего поколения является печатная плата, заполненная компонентами в виде корпусированных ИМС.
Использование гибридных ИМС в РЭА четвертого поколения позволяет резко уменьшить массогабаритные параметры и повысить надежность.
При изучении гибридных ИМС обратите внимание на особенности толстопленочных и тонкопленочных ИМС, а также параметры и характеристики их пассивных элементов (резисторов, конденсаторов, индуктивностей). Этот материал достаточно подробно изложен в [2, с. 115-202]. Методы получения толстых и тонких пленок приведены в [2, с. 195-172].
Особое внимание уделите изучению вопросов расчета и проектирования гибридных ИMС, необходимых для успешного выполнения третьей задачи контрольной работы [2, с. 203-216].