148139 (692213), страница 2
Текст из файла (страница 2)
ηкад = 0,68 - 0,76 - адиабатный к. п. д. компрессора.
Повышение температуры составит:
(К)
Температура воздуха на входе в двигатель:
(5.4)
где σ = 0,5 - 0,8 - степень тепловой эффективности охладителя.
Теоретически, если σ = 0, то , что означает отсутствие охлаждения.
Если σ = 1, то , что соответствует полному охлаждению воздуха до температуры окружающей среды. С термодинамической точки зрения величину σ целесообразно увеличивать, однако при этом растут габариты и масса охладителя. Практикой выработаны рекомендации для целесообразного выбора значения степени тепловой эффективности охладителя в диапазоне, указанном выше.
Температура воздуха на входе в двигатель составит:
(К)
4. Расчет процесса впуска
Процесс впуска представляет собой сложный термодинамический процесс в открытой термодинамической системе, который сопровождается изменением объёма цилиндра, проходного сечения впускных клапанов, сопротивления на впуске. В этом процессе протекают все диссипативные явления, вызванные трением, теплообменом и диффузией. Точный расчёт процесса впуска возможен лишь на основе численного решения системы дифференциальных уравнений, что выходит за рамки настоящей курсовой работы.
В курсовой работе ограничимся определением параметров рабочего тела в конце процесса впуска, используя многочисленные экспериментальные данные, полученные при исследовании двигателей подобных типов.
За начало цикла примем, точку "r", которая соответствует концу процесса выпуска или началу впуска, а поршень находится в ВМТ. Количество рабочего тела в цилиндре в этом случае минимально, поэтому погрешности в оценке параметров рабочего тела сравнительно мало влияют на общий результат расчёта.
На основании статистических опытных данных принимаем параметры рабочего тела в точке "r" для бензиновых двигателей с наддувом:
(МПа)
;
Давление в цилиндре в конце впуска отличается от давления наддува Рк в меньшую сторону за счёт потерь давления при впуске (главным образом в клапанных устройствах):
(6.1)
где = (0,05-0,15). Рк - потеря давления при впуске.
Давление в цилиндре в конце впуска составит:
(МПа)
Температуру в цилиндре в конце впуска определяют по формуле, полученной на основе баланса энергии при впуске:
(5.2)
где - повышение температуры свежего заряда при впуске за счёт подогрева от стенок (для дизельных двигателей
= 20 - 40 К);
γ - коэффициент остаточных газов (для дизельных двигателей γ = 0-0,05);
Температуру в цилиндре в конце впуска определяем по формуле (5.2):
(К)
Величины Тr и γ, принятые при расчете процесса впуска, в дальнейшем могут быть проверены и при необходимости уточнены.
Важнейшей характеристикой процесса впуска является коэффициент наполнения ηv, который равен отношению количества свежего заряда, действительно поступившего в цилиндр, к теоретическому количеству свежего заряда, который помещается в рабочем объеме цилиндра при параметрах на впуске (Pk,Tk).
Для расчета коэффициента наполнения служит формула:
(5.3)
Коэффициент наполнения влияет на количество свежего заряда в цилиндре и, следовательно на мощность. Поэтому всемерно стремятся к увеличению коэффициента наполнения, снижая потери при впуске ( ) и осуществляя продувку камеры сгорания в период газообмена.
5. Расчёт процесса сжатия
В процессе сжатия происходит уменьшение объема, поэтому давление и температура тела в цилиндре возрастают. На процесс сжатия сильное влияние оказывает теплообмен со стенками, а также трение и диффузия при движении и перемешивании рабочего тела. Теплообмен со стенками приводит к подводу теплоты к рабочему телу, когда его температура низка. В конце процесса сжатия температура рабочего тела превосходит температуру стенок и направление теплового потока меняется - он направлен от рабочего тела к стенкам, то есть происходит теплоотвод. Поэтому процесс сжатия является сложно-политропным с переменным показателем политропного процесса.
Для определения параметров рабочего тела в конце сжатия используют понятие условно политропного процесса с постоянным средним показателем n1. Величины n1 определены для разных типов двигателей путем обработки многочисленных опытных индикаторных диаграмм (для дизельных двигателей n1 = 1,32 - 1,39)
На основании уравнений политропного процесса давление в конце сжатия:
(МПа) (7.1)
Температура в конце сжатия:
(К) (7.2)
В конце процесса сжатия (условно в точке "с") начинается процесс сгорания, который протекает различно в бензиновых и дизельных двигателях.
В бензиновых двигателях практически вся смесь приготовлена для сгорания, средняя скорость сгорания велика, а продолжительность сгорания сравнительно небольшая.
6. Расчет процесса сгорания
Уравнение сгорания выражает баланс энергии в процессе сгорания, составленный на основе 1-го закона термодинамики, в данном случае с учётом того факта, что часть теплоты подводится к рабочему телу при V = const, а другая часть - при p = const.
Уравнение имеет вид:
(8.1)
где R = 8,314 - универсальная газовая постоянная;
- степень повышения давления при сгорании;
Для определения величины В сначала задают максимальное давление при сгорании в пределах:
для двигателей средней напряжённости:
Рz = 10 - 12 МПа;
для высокофорсированных двигателей:
рz= 12 - 14 МПа;
= 0,65 - 0,85 - для дизельных двигателей;
Hu - теплота сгорания дизельного топлива (см. табл.3);
Cvz - теплоёмкость продуктов сгорания.
Величины Pz и z обеспечиваются за счёт регулировок и конструирования топливной аппаратуры (профиля кулачка топливного насоса, конструкции нагнетательного клапана, силы затяжки пружины форсунки, числа и размеров отверстий распылителя).
Продукты сгорания в дизельном двигателе, всегда содержат избыточный воздух, так как двигатель работает при >1. Поэтому теплоёмкость продуктов сгорания рассчитывает как для смеси:
(8.2)
где и Cvcb теплоёмкости соответственно "чистых" продуктов сгорания и воздуха, определяемые по таблице при температуре Tz (tc) методом интерполяции.
Уравнение сгорания содержит две переменные величины Tz и - поэтому оно решается относительно Tz приближёнными методами. В данном случае используется графический способ решения.
Вычисляем правую часть уравнения:
(8.3)
Для левой части уравнения составляем таблицу 8.1 в диапазоне ожидаемых температур Tz.
Таблица 8.1-Расчет уравнения сгорания.
Tz | 1773 | 1873 | 1973 | 2073 | 2173 |
tz | 1500 | 1600 | 1700 | 1800 | 1900 |
Cvz0 | 27,86 | 28,136 | 28,395 | 28,634 | 28,863 |
Cvzв | 24,46 | 24,653 | 24,837 | 25,005 | 25,168 |
Cvz | 26,63399058 | 26,88006153 | 27,11201721 | 27,32541524 | 27,53061624 |
(Cvz+R) Tz | 61962,78731 | 65918,47725 | 69895,53195 | 73880,5078 | 77890,35108 |
Рисунок 8.1 - Графическое решение уравнения сгорания
Найденная температура Tz=1985 К является максимальной температурой цикла, она используется в дальнейших расчётах.
Степень предварительного расширения:
7. Расчёт процесса расширения
В процессе расширения важную роль играют явления, связанные с участием теплоты:
в начале расширения имеет место подвод теплоты за счёт догорания топлива (точка “Z” обозначает конец условного сгорания, когда достигается максимальная температура);
в конце расширения происходит интенсивный теплоотвод в стенки за счёт большой разницы температур рабочего тела и стенок.
Поэтому процесс расширения является сложно - политропным с переменным показателем политропы. В расчётах он заменяется условно - политропным процессом с постоянным средним показателем политропы, который на основании многочисленных опытных результатов, выбирается в диапазоне n2=1,18 - 1,28 для дизельных двигателей
В дизельных двигателях степень расширения равна:
(9.2)
На основании уравнений для политропного процесса определяем давление в конце расширения:
(МПа) (9.3)
Температура в конце расширения:
(К) (9.4)
8. Проверка расчета процесса впуска
В процессе выпуска происходит дальнейшее расширение рабочего тела, то есть уменьшении давления и увеличение. удельного, объёма, и его вытеснение из цилиндра. В п.6 параметры начала впуска (или конца выпуска) принимались на основе статистических рекомендаций Рr и Тr.
Теперь правильность выбора этих величин можно, проверить.
Считаем процесс выпуска условно - политропным со средним показателем .
Тогда по уравнению политропы имеем:
(К) (10.1)
Допускается отличие величины Тr, рассчитанной по уравнение, от ранее принятой величины на 50-60 К. Если указанное условие выполнено, то это означает, что расчет правильный. В нашем случае отличие не выходит за допустимые границы.
Коэффициент остаточных газов проверяют по формуле:
(10.2)