147938 (692116), страница 3
Текст из файла (страница 3)
В настоящее время отсутствует достаточный объем статистических данных, необходимых для расчета припусков в случае восстановления деталей различными методами, поэтому соответствующие припуски назначаем, используя табличные данные.
6. Выбор технологических баз
Выбор технологических баз в значительной степени определяет точность получения линейных и угловых размеров детали в процессе ремонта. При выборе технологических баз руководствуются следующими положениями:
- в качестве технологических баз при ремонте рекомендуют принимать поверхности (оси), служившие технологическими базами при изготовлении детали и не воспринимающие значительные воздействия в процессе эксплуатации;
- при прочих равных условиях меньшие погрешности имеют место, когда используют на всех операциях одни и те же базы, т.е. когда соблюдается принцип единства баз;
- желательно совмещать технологические базы с конструкторскими базами проектируемой детали, т.е. использовать принцип совмещения баз;
- поверхности, используемые в качестве технологических баз на операциях окончательной обработки должны отличаться наибольшей точностью;
- при отсутствии у ремонтируемой детали надежных технологических баз можно создавать искусственные технологические базы, включив в технологический процесс дополнительные операции, на которых эти базы обрабатывают.
Выбор технологических баз при ремонте детали сопровождают расчетом погрешностей базирования εб (погрешностей несовмещения баз), что является основой для обоснования выбранной схемы установки детали.
Схема установки считается приемлимой, если производственная погрешность εу, равная сумме погрешности базирования εб и погрешности технологической системы εтс, не превышает допуска Т на размер, выдерживаемый на выполняемом технологическом переходе или операции, т.е. εу= εб+ εтс
При выполнении последнего технологического перехода обработки поверхностей, являющихся границами какого-либо размера, производственная погрешность εу не должна превышать величины допуска Т, указанного на ремонтном чертеже.
За базовую поверхность принимается саму обрабатываемую поверхность оси коромысел.
7. Расчет режимов обработки
Методику назначения и расчета режимов резания применяют в индивидуальном, мелкосерийном и серийном производстве. Режимы резания выбирают в следующем порядке.
Изучив рабочий чертёж детали и конкретный обрабатываемый элемент заготовки, определяют длину рабочего хода инструмента. Выбирают режущий инструмент и его стойкость, учитывая при этом свойства обрабатываемого материала, точность обработки, жесткость системы СПИД, величину припуска и т.п.
Руководствуясь справочной литературой, находят глубину резания t мм. Нужно стремиться к тому, чтобы глубина резания равнялась припуску на обработку, т.е.:
t=z.
Если по технологическим причинам (точность обработки, шероховатость поверхности и т.д.) такого соотношения добиться не удаётся, то при первом проходе глубина резания должна быть t1=(0,8…0,9)z, при втором проходе t2=(0,2…0,1)z.
Затем выбирают подачу s мм. Чтобы получить максимальную производительность, стремятся использовать наибольшую подачу станка, учитывая при этом заданную точность и шероховатость поверхности после обработки, жесткость системы СПИД и материал режущего инструмента.
Зная t и s для конкретной операции, определённого инструмента, материала обрабатываемой детали и условий обработки, выбирают или рассчитывают скорость резания v. Если инструмент затачивают алмазными кругами, то полученную расчетную скорость резания нужно умножить на поправочный коэффициент. Имея скорость резания, определяют расчетную частоту вращения шпинделя станка либо число двойных ходов стола и резца. Сверяя полученное значение nД с паспортными данными станка устанавливают фактическую частоту вращения шпинделя nФ максимально приближенную к расчетной. Определив силу резания РР по справочным данным, подсчитывают эффективную мощность резания NЭ. Значение NЭ должно быть меньшим либо равным мощности электродвигателя станка, т.е. NЭ< NДВ. В этом случае обработка детали возможна.
7.1 Расчёт величины припуска покрытий под механическую обработку
Необходимость механической обработки обусловливается тем, что топология, размеры и формы восстанавливаемых поверхностей деталей только приближены к необходимым размерам и технологическим условиям на их восстановление.
К настоящему времени в условиях практики сложились четыре схемы базирования и механической обработки деталей, в зависимости от группы их восстановления. По этим основным технологическим схемам обработки ведутся дальнейшие расчеты величин припусков у покрытий под механическую
обработку.
Припуском под механическую обработку следует называть слой металла, который удаляется с поверхности покрытий в процессе получения необходимых параметров детали. Припуск должен: а) компенсировать погрешности, полученные в результате наращивания изношенной поверхности детали железом; б) компенсировать погрешности, получаемые в результате выполнения рассматриваемых операций.
Устанавливать величину припуска следует для каждой операции в отдельности с учетом всех предъявляемых требований к восстанавливаемой поверхности.
Погрешности, возникающие при механической обработке поверхностей, носят сложный характер взаимодействия и зависят от многих причин. Погрешности от неточностей износа и упругих деформаций оборудования, инструмента, приспособлений, а также получаемые искажения формы должны учитываться операционным допуском. Операционный допуск по своей величине должен соответствовать суммарной погрешности от указанных причин.
Погрешности, полученные при выполнении предыдущей операции, шероховатость поверхности, глубина дефектного слоя, остаточные напряжения, допуск отклонения размера "допуск в металл" и погрешности, полученные на данной операции, неточность базирования, от усилий зажатия должны быть компенсированы величиной припуска.
Общая толщина покрытия электролитического железа, наращиваемого на изношенные поверхности деталей, определяется:
h = ΔhКФ+ΔhКИ+Δ, (7.1)
где ΔhКФ – слой покрытия, компенсирующий нарушение геометрической формы. Определяется величиной металла, снятого с восстанавливаемой поверхности детали, при предварительной механической обработке "на верность", для оси коромысел не превышает 0,15 мм;
ΔhКИ – слой покрытия, компенсирующий износ восстанавливаемой поверхности детали;
Δ – припуск на механическую обработку.
При бесцентровом шлифовании с продольной или радиальной подачами величина припуска на механическую обработку [1]:
2Δ=0,072+0,9δ, (7.2)
где δ – допуск на размер, равен 0,012.
2Δ=0,072+0,9*0,012=0,0828 мм, (на одну сторону – 0,0414 мм).
Износ детали равен: (16-15.94)*1.25=0.075 мм, (на одну сторону – 0,0375 мм).
Слой наращиваемого металла составит:
h=0.075+0.0375+0.0414=0.154 мм.
7.2 Предварительное шлифование "на верность"
Принимаем поперечную подачу (глубина шлифования) h = 0,02/0,01 мм/об (черновое/чистовое шлифование) и окружную скорость детали соответственно V=20/2 м/мин [3].
Число проходов:
, (7.3)
где t – припуск (для шлифования "на верность" – слой ΔhКФ на сторону) на шлифование.
;
.
Состав нормы времени в мин.:
; (7.4)
где То - основное время, мин;
Тв – вспомогательное время на установку и снятие деталей со станка, пуск и остановку станка, подвод и отвод режущего инструмента, измерения и т.п., мин;
Тдоп – дополнительное время, мин;
Тпз – подготовительно-заключительное время, мин;
n – количество деталей в партии, шт..
Основное время при поперечном шлифовании, мин:
, (7.5)
где Sпоп – поперечная подача на один оборот детали (S=0,02/0,01 мм/об);
t – припуск на шлифование (на сторону), мм.
мин;
мин.
Вспомогательное время при шлифовании 0,21 мин.
Дополнительное время при шлифовании можно принять 7% от То.
Подготовительно-заключительное время рекомендуется принимать 14…18 мин.
=0,1875+0,21+0,013+18/54=0,74, мин,
=3,75+0,21+0,26+18/54=4,55, мин.
7.3 Нанесение гальванопокрытия
Оборудование:
Ванна 70-7880-1091.
Преобразователь тока АНД500/250.
Электролит: двухлористое железо – 500г/л, соляная кислота – 1,5г/л.
Для восстановления деталей машин, кроме гальванической установки, необходимы подвесные приспособления (технологическая оснастка). К подвесным приспособлениям предъявляются следующие требования:
а) обеспечение контакта с малым переходным сопротивлением,
б) получение равномерных по толщине покрытий,
в) безопасность и удобство в работе,
г) надежное крепление деталей и транспортабельность при технологических перемещениях,
д) возможность полной загрузки ванн по рабочему объему
е) унифицированность в пределах групп.
От конструкции подвесных приспособлений зависит производительность труда, качество получаемых покрытий и коэффициент загрузки гальванического оборудования.
На рис. 7.1 приведены схема подвески. Для 1 группы (куда входит ось коромысел) деталей применяются групповые переналаживаемые приспособления, вмещающие, в зависимости от размеров, по 4—12 деталей на одной подвеске. Подвески собираются из унифицированных деталей, и за счет паза в основании (дет. 5) легко регулируются на "любой размер. Повышенные требования предъявляются только к прижимам (дет. 2), которые должны быть жесткими и упругими. Поэтому прижимы изготавливаются из Ст. 65Г с последующей термообработкой. При изготовлении прижимов из Ст. 45 без термической обработки (по опыту завода АРЕМЗ, г. Москва) они быстро в процессе эксплуатации теряют исходную жесткость, и наблюдается частое выпадение деталей из подвесок при технологических перемещениях. Изоляция подвесок, за исключением контактных пяток, производится полихлорвиниловой пленкой в два слоя. Для лучшего прилегания к поверхности подвесного приспособления пленку перед обмоткой подогревают в воде при 40-60°С. Срок службы этих подвесок до ремонта равен 3-4 месяцам беспрерывной работы.
-
Крючок (медь)
-
Прижим (Ст. 65)
-
Болт и гайка (М8)
-
Пятка (Ст. 3)
-
Основание
Рисунок 7.1 – Подвеска для групповой гальванической оснастки
Ванны для I группы восстанавливаемых деталей имеют общий объем не более 1500 л. Электролит, находясь в ванне указанного объема, качественно и быстро прогревается. Под качеством прогрева электролита подразумевается постоянное значение температуры по всему объему.
При объемах ванн свыше 1500 л начинают наблюдаться слои электролита с различным перепадом температур. С увеличением объемов ванн неравномерность температурных полей растет.
Завешивание подвесных приспособлений с восстанавливаемыми деталями лучше двухрядное, в шахматном порядке, по длине ванны. Аноды располагаются по боковым поверхностям, вдоль ванны. Количество ярусов восстанавливаемых деталей на одном подвесном приспособлении колеблется от двух до шести и зависит от длины монтируемых деталей.
Исходя из планировки расположения деталей 1 группы в ванне осталивания и прогрева электролита, целесообразно иметь ванну габаритом 700*2000*800. Ширину ванны вверху следует задать на 30 см больше для лучшей ее промывки при технологических осмотрах. При таких габаритах в ванну входит 9 подвесок в шахматном порядке с шагом 200 мм, т.е. один завес вмещает 54 детали (на одной подвеске 6 деталей).
Для уменьшения испаряемости воды зеркало ванны закрывается полиэтиленовой крошкой из расчета толщины защитного слоя 0,7—1,0 см. Перед употреблением крошка вываривается в подкисленной воде (10% НСl) при температуре кипения воды t = 30 мин. Операцию выварки производят с целью предупреждения занесения в электролит органических примесей. При потемнении защитного слоя до ярко-коричневого. Цвета его снимают с поверхности ванны и вываривают до просветления аналогичным образом [4].
Рассчитываем норму времени (на осталивание) по формуле:
, (7.6)















