147307 (691848), страница 3
Текст из файла (страница 3)
n1=1,368-[1,510-4+210-6(-1)](Tа-400)-1,510-3(-10)+0,002(nен-30) (27)
2.2.3 Процесс сгорания
В процессе сгорания достигаются максимальные значения давления и температуры рабочего тела в цикле, определение которых и составляет основную задачу расчета процесса сгорания.
При расчете учитываем состав топлива и качество горючей смеси, а также способ смесеобразования, который влияет на выбор степени повышения давления р.
(26 )
(27)
(28)
, при < 1 (29)
, при 1 (30)
(31)
(32)
(33)
(34)
Температуру в конце видимого процесса сгорания Тz определяем из уравнения сгорания, которое имеет вид:
Z H р.см + (Сvc + 8,314p) Тc = (Сvz + 8,314)Тz (35)
После подстановки приближенных эмпирических выражений для теплоемкостей
CVc= 20,16 + 1,728 10-3 Тс (36)
CVz=(18,4+2,6)+(1,549+1,382/)10-3Тz, при < 1 (37)
CVz=(20,10+0,92/)+(1,549+1,382/)10-3Тz, при >1 (38)
уравнение сгорания приводим к виду
АTz2 + ВТz + F = 0 . (39)
Отсюда:
(40)
где, коэффициенты определяются выражениями:
A = (1,549 + 1,382/)10-3
B = (28,414 + 0,92/) (41)
F = -(0,82Hрс + 20,16 Тc+ 8,314 Тc p + 1,728Tc210 –3)
рz = р pс - для дизельных ДВС (42)
= Т/ р Тc. (43)
2.2.4 Процесс расширения
При расчете полагается, что расширение является политропным процессом с постоянным показателем политропы n2.
рв=рz
(44)
(45)
Значение среднего показателя политропы n2 , также как и n1 , зависит от многих факторов и лежит в пределах:
n2 =1,24...1,30 - для дизельных ДВС.
В программе расчета их находим по эмпирическим формулам:
n2 = 1,263 - 2,6*10-5 (Tz - 2000) + 4*10-4 + 0,028( - 1) (46)
2.2.5 Процесс выпуска
Значениями давления рb и температуры Тb в конце процесса задаем на начальной стадии теплового расчета.
Проверку ранее принятой температуры остаточных газов производим по формуле:
(47)
Если полученное по этой формуле значение Тr существенно отличается от принятого ранее (Tr > 10%),то корректируем расчет процессов цикла при уточненном значении Тr , принятом предварительно в разделе 2.2.1.
В программе расчета величина отклонения Тr допускается не более 10К.
2.2.6 Расчет индикаторных показателей
Индикаторными показателями оценивают энергетические возможности, качество и эффективность рабочего цикла.
(48)
(49)
(50)
Значение коэффициента полноты индикаторной диаграммы принимается в пределах:
= 0,92...0,95 - для дизельных двигателей.
2.2.7 Расчет эффективных показателей и определение основных размеров двигателя
Cредняя скорость поршня
Wп ср = 210 -3 Sneн
м/с. (51)
Для современных двигателей W n ср = 5,5...10,5 м/с.
Определяем среднее условное давление механических потерь двигателя, включающие внутренние потери. Внутренние потери включают все виды механического трения, потери на газообмен, на привод вспомогательных механизмов (вентилятор, генератор, топливный, водяной и масляный насосы и др.) вентиляционные потери (движение деталей в среде воздушно-масляной эмульсии и в воздухе), газодинамические потери в дизелях с разделенными камерами сгорания.
Так как до 80 % всех механических потерь составляют потери на трение, то с приближением принимаем, что среднее условное давление механических потерь
pмп =a+b Wnср
Мпа. (52)
где а и в - коэффициенты, зависящие от типа, конструкции, размеров, числа цилиндров и теплового состояния двигателей и приведены в таблице 3;
Wn ср - средняя скорость поршня, м/с.
Таблица 3. Значение коэффициентов a и b
| Типы двигателя | а, МПа | b, МПа |
| Дизели с нераздельной камерой сгорания | 0,089 | 0,012 |
Зная эффективную мощность, литраж двигателя и номинальную частоту вращения коленвала, определяем среднее эффективное давление:
МПа, (53)
Vh - рабочий объем цилиндра, л;
i - число цилиндров;
ne - частота вращения коленвала, с -1;
- коэффициент тактности ( = 4 - для 4-х тактных двигателей);
N eн - номинальная мощность двигателя, кВт.
Среднее эффективное давление - условное постоянное давление газов за ход поршня совершающее работу, равную эффективной работе цикла.
Рабочий объем одного цилиндра (л):
Vh = Vл / i
л. (54)
Для определения диаметра цилиндра D задаемся величиной S/D. В работе это отношение принимаем как у прототипа. У автотракторных двигателей
S/D = 0,9...1,3.
Диаметр цилиндра рассчитываем:
мм (57)
В соответствии с протатипом принимаем D
мм.
Механический КПД двигателя:
(56)
Этот показатель характеризует степень использования работы, совершаемой газами внутри цилиндра для получения полезной работы на валу двигателя.
Эффективный КПД:
e = i мп
(57)
Эффективный крутящий момент для номинального режима:
нм. (58)
Здесь N e приводим в кВт, ne - в с-1 .
В качестве одного из показателей, характеризующих форсировку двигателя используется литровая мощность
кВт/л (59)
Для современных дизельных двигателей:
Nуд.л = 10 ...25 кВт/л; mуд = 5...13 кг/кВт;
Полученные результаты сводим в таблицу 4.
Таблица 4 Основные параметры двигателя и рабочего цикла
| Наименование | Обозначение | Значение |
| Эффективная номинальная мощность, кВт |
| 16,7 |
| Частота вращеня номинальная, с-1 | nен | 29 |
| Средняя скорость поршня, м/с | Wп ср | 6,4 |
| Среднее условное давление механических потерь, Мпа | pмп | 0,177 |
| Среднее эффективное давление, Мпа | Ре | 0,684 |
| Рабочий объем одного цилиндра, л | Vh | 0,86 |
| Диаметр цилиндра, мм | D | 110 |
| Механический КПД двигателя, |
| 0,79 |
| Эффективный КПД , | e | 0,34 |
| Эффективный крутящий момент, нм |
| 91,7 |
| Литровая мощность, кВт/л | Nуд.л | 9,7 |
2.3 ПОСТРОЕНИЕ ИНДИКАТОРНОЙ ДИАГРАММЫ ДВИГАТЕЛЯ
Индикаторная диаграмма двигателя - это графическое представление процессов, составляющих рабочий цикл двигателя в координатах P-V. Давление рабочего тела Р откладываем по оси ординат, а объем занимаемый им в цилиндре двигателя V - по оси абсцисс. Поскольку этот объем является линейной функцией перемещения поршня, то для удобства часто давление откладываем как функцию перемещения (хода) поршня (S). Масштабы по осям выбираем удобными с точки зрения построения и дальнейшего считывания с графика изображенных величин. Например, для давления p = 0,05 МПа/мм. Соотношение масштабов по осям рекомендуется принимать так, чтобы высота диаграммы в 1,4...1,7 раза превышала ее основание.
В курсовой работе рекомендуется при построении индикаторной диаграммы пользоваться относительным объемом Vx = V/Vа . То есть, точка В (рис. 1), соответствующая полному объему цилиндра по оси абсцисс имеет координату равную 1, а точка А, соответствующая объему камеры сгорания координату 1/. Отрезок ОА соответствующий объему камеры сгорания в этом случае равен: ОА = АВ/(-1) (60)
Политропы сжатия и расширения можно строить графическими или аналитическим методом. Используем аналитический метод, при котором координаты промежуточных точек рассчитываем по формулам:
- для политропы сжатия:
(61)
- для политропы расширения:
(62)
Результаты расчета удобно представить в виде таблицы 2.
Отложив и соединив тонкими линиями все расчетные точки получим расчетную индикаторную диаграмму. Для получения действительной индикаторной диаграммы необходимо "скруглить" расчетную на участках, изображающих процессы сгорания и выпуска-впуска так как показано на рис 1/. С учетом углов впрыска и воспламенения топлива, открытия и закрытия клапанов.
Таблица 2. Результаты расчета политроп сжатия и расширения
| Vx=V/Va | 1 | 0,667 | 0,5 | 0,333 | 0,2 | 0,125 | 0,1 | 1/ | 1/ | |
| 1/Vx | 1 | 1,5 | 2 | 3 | 5 | 8 | 10 | |||
| сжат. | рx=рa(1/Vx)n1 | 0,090 | 0,150 | 0,230 | 0,400 | 0,810 | 1,550 | 2,100 | 2,310 | 4,190 |
| расш. | рx=рb(1/Vx)n2 | 0,326 | 0,540 | 0,790 | 1,320 | 2,540 | 4,640 | 6,170 | 6,710 | 6,710 |
3 ДИНАМИЧЕСКИЙ РАСЧЕТ КРИВОШИПНО-ШАТУННОГО МЕХАНИЗМА















