147164 (691783), страница 5
Текст из файла (страница 5)
Магнитную дефектоскопию применяют для контроля деталей и узлов из металлов, которые могут быть намагничены. Этот метод позволяет обнаружить усталостные и закалочные трещины, волосовины, включения и другие пороки металла, выходящие на поверхность. Сущность метода заключается в том, что деталь намагничивают. При наличии на её поверхности трещины процесс намагничивания сопровождается концентрацией магнитных силовых линий на заостренных кромках трещины и образованием в этих местах магнитных полюсов. Если на такую деталь нанести ферромагнитный порошок, то под действием сил магнитного поля частицы порошка будут скапливаться и удерживаться на том месте, где трещина выходит на поверхность. Частички порошка будут как бы обрисовывать контур трещины, показывать её месторасположение, форму и длину. Этот метод очень эффективен при выявлении поверхностных дефектов, испытания деталей быстры, надёжны, дешевы и наглядны. К недостаткам можно отнести трудности, возникающие при размагничивании громоздких деталей, недоступность непосредственного контроля деталей в узлах или конструкциях без их разборки, а также невозможность контроля деталей из пластмасс, цветных металлов и сталей аустенитного класса.
2.4 Анализ состояния метрологического обеспечения стадий ремонта дизель-генераторной установки
Основной задачей ремонта является своевременная замена и восстановление изношенных деталей. Произведя анализ состояния метрологического обеспечения процесса ремонта дизель-генераторной установки, можно сделать следующие выводы:
Качество производимых измерений износа и деформации деталей узлов и агрегатов сильно влияет на качество производимого ремонта в целом, так как чем эффективней метод контроля, тем выше вероятность обнаружения дефектов. Применяемые методы контроля осуществляют лишь обнаружение поверхностных дефектов, хотя существует вероятность наличия скрытых трещин и усталостей в полости детали. Что касается наличия на предприятии НТД, регламентирующей требования к средствам, методам измерений и контроля, то она имеется в полном объеме и регламентирует основные требования предъявляемые к производству ремонта дизель-генераторной установки специализированного серийного тепловоза ТЭП70.
3 Разработка рекомендаций по выполнению измерений, контроля и испытаний
3.1 Разработка рекомендаций по выбору метода определения износа деталей
В период эксплуатации трущиеся пары механизмов, омываемые маслом, изнашиваются, а продукты изнашивания накапливаются в масляной системе. Если через определенные периоды наработки производить анализ масла, циркулирующего по замкнутому контуру, то по содержанию в нём продуктов изнашивания (различных металлов) трущихся пар можно установить скорость их изнашивания. В данной работе предлагается внедрение метода оценки технического состояния дизелей на основе спектрального анализа картерного масла. Пробы масла отбираются один раз перед постановкой тепловоза на ТО. По результатам спектрального анализа картерного масла (по содержанию в нем продуктов изнашивания), оценивается состояние дизеля. Так, по содержанию в масле железа определяют износ втулок цилиндров, меди – втулок поршневых пальцев, свинца и олова – вкладышей подшипников коленчатого вала. Такой контроль даёт возможность определить момент наступления ускоренного износа какой-либо трущейся пары и позволяет своевременно принять меры по предотвращению прогрессирующего изнашивания.
3.2 Разработка рекомендаций по выбору метода контроля состояния деталей
Для обнаружения пороков в деталях, в данном разделе предлагается применение ультразвуковой дефектоскопии. Ультразвуковую дефектоскопию применяют для отыскания как поверхностных дефектов, так и глубинных пороков, пороков не выходящих на поверхность деталей. Этот вид дефектоскопии основан свойстве ультразвуковых колебаний с частотами выше 20 кГц проникать в толщу любого твердого или жидкого тела и отражаться от границ раздела двух сред (воздух – металл, инородные включения – металл, жидкость – газ). Ультразвуковую дефектоскопию можно осуществлять двумя методами: акустической тени и отраженного эха. В первом случае контролируемое изделие располагают между двумя искателями, один из которых посылает ультразвуковые колебания, а другой их принимает. Вследствие этого за дефектом образуется акустическая тень. Во втором случае, оба искателя располагаются на какой-либо стороне детали и искатель-приёмник воспринимает лишь ультразвуковые колебания, отраженные от дефекта. Метод акустической тени обладает сравнительно малой чувствительностью, поэтому большее распространение получил метод отраженного эха. Наиболее существенным достоинством ультразвуковой дефектоскопии является возможность выявления глубинных дефектов, как у отдельных деталей, так и у деталей находящихся в собранных узлах и конструкциях, независимо от материала, из которого они изготовлены. Для ультразвукового контроля в локомотивном депо рекомендуем использовать дефектоскопы, работающие по методу отраженного эха (Рисунок 8)
Рисунок 8 – Схема ультразвукового дефектоскопа
1 – электронно-лучевая трубка; 2 – генератор развертки; 3 – усилитель; 4 – импульсный генератор; 5 – приемный искатель; 6 – передающий искатель; 7 – контролируемое изделие.
Рисунок 9 – Сдвоенный искатель к ультразвуковому дефектоскопу для определения поперечных трещин на коренных шейках коленчатого вала дизеля
1 – пьезоэлектрическая пластина; 2 – катушка индуктивности; 3 – корпус; 4 – штепсельное гнездо; 5 – демпфер.
Импульсный генератор 4 через равные промежутки времени посылает короткие электрические импульсы на пьезоэлектрическую пластинку предающего искателя 6, который преобразует импульсы в ультразвуковые и направляет их в контролируемое изделие 7. Одновременно с этим вступает в работу генератор развертки 2. При отсутствии дефекта ультразвуковые колебания отражаются от противоположной поверхности изделия и воспринимаются такой же пластиной приемного искателя 5, где они вновь преобразуются в электрические импульсы, которые поступают в усилитель 3, а затем на вертикально отклоняющиеся пластины электронно-лучевой трубки 1. При наличии в изделии дефекта часть ультразвуковых колебаний вначале отразится от него (эхо-сигнал), а остальная часть отразится от противоположной стороны изделия (донный сигнал). Усиленный эхо-сигнал попадает на вертикально отклоняющиеся пластины электронно-лучевой трубки раньше донного. Вследствие этого на экране левее донного сигнала появляется эхо-сигнал от дефекта. Прием эхо-сигналов происходит в промежутке между двумя очередными электрическими импульсами генератора. Современные средства ЭВМ позволяют обработать полученные результаты и преобразовать принимаемые эхо-сигналы в изображение. Что в значительной степени облегчает распознавание дефектов.
3.3 Эффективность разработки
Предложенные мероприятия упрощают ряд задач. Ультразвуковой метод контроля деталей позволяет увеличить скорость контроля деталей, наиболее существенным достоинством ультразвуковой дефектоскопии является возможность выявления глубинных дефектов, как у отдельных деталей, так и у деталей находящихся в собранных узлах и конструкциях, независимо от материала, из которого они изготовлены. Также возможность реконструкции сигналов в 2D и 3D изображения и обнаружение недопустимых дефектов.
4 Поверка средств измерений
4.1 Методика поверки
Настоящая методика поверки устанавливает методы и средства первичной и периодической поверки прибора. Межповерочный интервал – 1 год.
При проведении поверки должны выполняться следующие операции поверки:
-
Внешний осмотр
-
Опробование
-
Проверка диапазона рабочих частот приемника
-
Проверка максимальной чувствительности приемника
-
Проверка абсолютной погрешности измерения амплитуды
-
входных сигналов
-
Проверка абсолютной погрешности регулировки усиления
-
Проверка относительной погрешности измерения временных
-
интервалов
Поверка проводится организациями Госстандарта или уполномоченными
им организациями. В случае отрицательного результата при проведении одной из операций, поверку дефектоскопа прекращают, а дефектоскоп признают не прошедшим поверку. При проведении поверки должны применяться средства, указанные в таблице 6. Средства поверки должны быть поверены в установленном порядке.
4.2 Требования к квалификации поверителя
К проведению измерений при поверке и обработке результатов измерений допускают лиц, имеющих квалификацию государственного или ведомственного поверителя и изучивших устройство и принцип действия аппаратуры по эксплуатационной документации.
4.3 Условия проведения поверки
При проведении поверки должны соблюдаться следующие требования:
-
Температура окружающей среды (20 Ѓ) 5) °С;
-
Относительная влажность воздуха от 30 до 80%;
-
Атмосферное давление (750 Ѓ) 30) мм рт. ст. (от 86 до 106,7 кПа);
-
Напряжение питания от 9 В или от входящего в комплект поставки блока питания от сети переменного тока 220 В при 50 Гц;
-
Внешние электромагнитные поля не более 40 А/м.
Подготовка к поверке
Перед проведением поверки дефектоскоп должен пройти наработку не менее 24 часов и быть подготовлен к работе.
4.4 Проведение поверки
Внешний осмотр
При внешнем осмотре должно быть установлено соответствие дефектоскопа следующим требования:
-
Комплектность дефектоскопа и прилагаемой документации;
-
Отсутствие механических повреждений дефектоскопа и его составных частей;
-
Наличие маркировки дефектоскопа;
-
Наличие всех органов регулировки и коммутации.
Опробование
Проверка исправности всех органов управления и индикации. Подготовить дефектоскоп к работе. Установить параметры настройки. К дефектоскопу подключить два согласованных ПЭП с рабочей частотой от 20 до 200 кГц. ПЭП устанавливаются напротив друг друга на расстоянии примерно 200 мм. Отрегулируйте параметры дефектоскопа таким образом, чтобы на экране наблюдался импульсный сигнал, прошедший через воздушный промежуток между ПЭП. Регулировкой ориентации ПЭП и частоты генератора импульсов дефектоскопа добиться максимальной амплитуды импульса. Убедиться, что максимальная амплитуда импульса при регулировке частоты импульсов генератора соответствует номинальной для данных ПЭП.
Выбором групп функций и их значений проверить работоспособность клавиатуры, светового и звукового сигнализаторов и зон АСД, регулировки контрастности и яркости подсветки экрана. Для проверки разъема подключения дефектоскопа к ЭВМ и внешним устройствам с помощью кабеля RS 232 подсоединиться ЭВМ и, используя поставляемое программное обеспечение, проверить работоспособность интерфейса.
Проверка энергонезависимой памяти режимов настройки.
Проверка функционирования энергонезависимой памяти режимов настройки производится путем записи в память и чтения из памяти режимов настройки. После проведения указанной проверки производится выключение дефектоскопа и, после повторного включения, вновь проверяется содержимое ячеек памяти режимов настройки.
Проверка амплитуды импульса возбуждения
Подготовить дефектоскоп к работе РЭ и установить параметры настройки. Подключить к выходу генератора импульсов возбуждения дефектоскопа эквивалентную нагрузку, состоящую из последовательно включенного резистора 510 Ом и с помощью осциллографа измерить амплитуду (размах) импульса возбуждения.
Проверка диапазона рабочих частот приемника.
Подготовить дефектоскоп к работе в соответствии п. 5 РЭ и установить параметры настройки. Подключить к входу приемника дефектоскопа генератор низкочастотных сигналов, установить на выходе генератора частоту 50 кГц и амплитуду сигнала 0,5 В, контролируя ее осциллографом. Установить усиление, соответствующее высоте сигнала на экране равной 100%. Если показания отличаются от 0 больше чем на 0,2 дБ, произвести корректировку. Произвести проверку величины амплитуды сигналов на частотах 20 и 2500 кГц.
Проверка максимальной чувствительности приемника.
Подготовить дефектоскоп к работе и установить параметры настройки. Установить усиление 70 дБ. Выбрать группу функций «ТРАКТ» и включить цифровой и аналоговый фильтр на 50 кГц. Отключить генератор низкочастотных сигналов от входа приемника дефектоскопа и записать показание цифрового индикатора, соответствующее амплитуде собственных шумов приемника приведенных к входу, которая должна быть не более минус 88 дБ. Подключить генератор к входу приемника через аттенюатор с затуханием 60 дБ (установить встроенный аттенюатор в положение 60 дБ). Установить частоту выходного сигнала генератора 50 кГц и амплитуду сигнала, соответствующую показаниям цифрового индикатора дефектоскопа, превышающую на 6 дБ показания до подключения генератора. С помощью осциллографа измерить амплитуду выходного сигнала генератора на входе приемника при отключенном аттенюаторе (положении встроенного генератора «0» дБ).