14694-1 (691060), страница 2

Файл №691060 14694-1 (Операциональное содержание понятий процесс и структура) 2 страница14694-1 (691060) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Но характерно, что отождествление первого и второго срабатывает только при переходе от первого ко второму, а при обратном движении от второго к первому не срабатывает, так как из двух кусков балки мы не можем получить опять одной целостной балки. Два куска балки – это не то, что одна целая балка. Но я могу отождествлять целую балку с двумя ее частями, потому что я умею и могу перейти от целой балки к частям. Если бы я имел операцию, позволяющую от двух кусков балки переходить к одной целостной балке, то я бы мог утверждать также и то, что две части балки тождественны или равнозначны одной целой балке. Если же у меня нет такой обратимой системы операций, то я этого не могу утверждать и перехожу только в одну сторону, в соответствии с тем, какая операция у меня задана.

Вы можете заметить, что я говорю о тождестве одного состояния и другого, если я могу преобразовывать объект из одного вида в другой. Если я такого преобразования не могу осуществить, если у меня нет для этого необходимых операций, то я, естественно, не могу говорить о том, что два фиксируемых мной состояния, относятся или должны быть отнесены к одному объекту.

В нашем случае у нас есть одна операция – разложение. А чтобы осуществить обратную ей операцию – объединение , – я должен ввести еще нечто дополнительное со стороны – клей или металлические скобы. На логическом языке как клей, так и скобы будут разными по материалу видами "связи". И теперь я могу сказать, что два куска балки, полученные при ее разрезании, и плюс еще клей или скоба, т.е. связь, дают то, что у меня было в исходе, т.е. возвращают все в прежнее состояние.

Таким образом, мы получаем видимость обратимости за счет того, что при обратной операции вводим еще нечто со стороны. Значит, фактически точной обратимости нет. Целое вновь составляется из частей благодаря некоторому третьему элементу, т.е. целое складывается уже не из двух, а из трех составляющих. И чтобы получить точную обратимость, в химии и физике уже при разложении стали вводить этот третий элемент – энергию связи. Но это появилось сравнительно поздно, а вначале дело выглядело как очевидный парадокс. И именно этому парадоксу мы и обязаны понятием связи.

Характерная особенность связи, собственно, и позволяющая вводить ее как связь, состоит в том, что вы вводите для соединения частей целого нечто третье, и это третье есть материальный элемент – в принципе такой же, как два других, и он вместе с ними входит в состав получаемого целого, но вы, рассматривая вновь воспроизведенное целое в отношении к исходному целому, не считаете этот третий элемент чем-то значимым для целого.

Итак, чтобы произвести отождествление, мы в дополнение к двум частям целого вводим нечто третье, но не рассматриваем это третье как элемент, равноценный двум первым. Именно поэтому он и выступает как связь. Таким образом, связь есть некоторое особое средство, позволяющее продукты вашего разложения перевести назад и соединить в целое. Схематически представим это так:

Значит, хотя связь и есть необходимый элемент вновь полученного целого, но она рассматривается как нечто принципиально иное, чем сами элементы, как явление, если хотите, из другого мира. Важно также понять, что в подавляющем большинстве случаев, а может быть и всегда, связь есть некоторое материальное образование, но когда мы называем это образование связью, это значит, что мы смотрим на него особым образом, не как на материальное образование, а как на связь. И это уже нечто принципиально иное.

Представьте себе еще зеркало, которое упало и разбилось на массу кусочков. Чтобы вновь собрать эти кусочки, вы вводите систему стерженьков, скрепляющих их все в одно целое. Когда затем вновь полученное образование начинают сопоставлять с прежним, то все его составляющие резко членятся на две группы: в одну входит все то, что соответствует частям прежнего зеркала, а в другую – все то, что было введено дополнительно, чтобы собрать его в одно целое. Именно это сопоставление разбивает составляющие вновь собранного целого на две группы – элементов и связей.

Связи, будь то клей или скрепляющие стерженьки, рассматриваются вами не как то, что присуще зеркалу как таковому, не как элементы зеркала.

Но вы можете задать и совсем другой ряд сопоставлений. Тогда все составляющие в равной мере будут элементами, хотя и разными. Таким образом выделение элементов и связей в рассматриваемом нами целом определяется прежде всего нашим способом подхода, теми задачами, которые мы решаем.

Это точно соответствует природе и строению человеческой социальной деятельности. Ведь суть ее состоит в том, что мы организуем и структурируем в более широкие и сложные целостности элементы природного и социального мира. Иначе можно сказать, что суть человеческой деятельности состоит в том, что она на одни процессы и явления накладывает как бы сетку других процессов и явлений, соединяя первые в сложные целостности. После того как это сделано и деятельность как бы собрала из заданного ей набора элементов более сложное целое, скрепив элементы связями, мы можем рассмотреть это целое как одно природное явление, как поле из разнородных элементов, скажем, кусочков зеркала и стерженьков. И тогда как одни, так и другие будут только элементами, хотя и разными.

Но чтобы представить имеющееся у вас поле объектов как поле разнородных образований, связанных в одно целое, вам придется ввести еще третью группу образований, которые и будут выступать как собственно связи, объединяющие и кусочки зеркала, и стерженьки. Это третье тоже будет чем-то материальным или, во всяком случае, может быть таким, а представлять его нужно будет как нематериальное, как чистую связь.

Вы легко можете заметить, что все сказанное мной не является систематическим и точным введением понятий элемента и связи. Это некоторая модель, или, точнее, образ, которым я сейчас заменяю систематические рассуждения. Это, таким образом, пока еще не введение понятий. Но этого образа нам будет достаточно, чтобы разобрать несколько более сложных случаев и ввести необходимые представления и понятия.

Представьте себе, что перед вами имеется некоторый объект и вы собираетесь его членить. Из логического анализа выясняется, что существует по меньшей мере две разных группы процедур членения: членение на элементы и членение на единицы.

Разница между элементами и единицами была очень хорошо разобрана в книге Л.С.Выготского "Речь и мышление". Он разбирал пример двойного представления воды. Химическая формула воды Н2О представляет воду как соединение, составленное из двух элементов. Рассматривая воду через эту призму, мы никогда не сможем объяснить, почему и каким образом вода тушит огонь. Ведь водород сам горит, а кислород поддерживает горение. Почему же тогда вода тушит огонь? Попробуем найти то расчленение, которое бы это объясняло.

Если вы расчлените воду на водород и кислород, то этого свойства, выделенного в исходном пункте вашего анализа, вы никогда не объясните. Чтобы объяснить исходно заданное свойство, нужно будет рассматривать молекулярный состав воды и, следовательно, членить и представлять воду совершенно иным образом. В этом случае именно молекула и сцепление молекул будут теми мельчайшими единицами, которые дадут вам возможность объяснить зафиксированное свойство.

Этот пример может быть обобщен и может стать основанием очень важного методологического принципа. Любой сложный объект может члениться либо на элементы, либо на единицы. Особенность членения объекта на единицы состоит в том, что продукты членения сохраняют свойства целого. Членение на элементы, наоборот, приводит к таким продуктам, которые свойств целого не имеют. Нетрудно заметить, что, производя подобное обобщение, мы фактически выходим за границы нашего примера, трансформируем сами противопоставления и различения. Но теперь мы уже можем и будем опираться не на образ молекул и химических элементов, не на интуитивно схватываемые здесь свойства, а на заданное выше формальное определение.

Рассмотрим с этой точки зрения другой пример. Представьте себе балку, стержень или просто прямой отрезок. Предположим далее, что вы зафиксировали некоторые свойства вашего объекта, например, свойство иметь длину. Предположим далее, что мы начинаем членить наш объект на части. Возникает вопрос: что мы будем получать в результате такого членения – единицы или элементы? До некоторого предела это будут единицы, которые вместе с тем могут рассматриваться как элементы. Можно сказать, что здесь единицы и элементы до какого-то момента совпадают, или, еще точнее, что здесь нет разницы между элементами и единицами, до какого-то момента она не проявляется, не играет роли. Можно сказать и так: мы здесь не можем ввести элементы (до поры), которые по своим свойствам отличались бы от целого, т.е. не были бы единицами. Еще точнее: здесь, наверное, нужно сказать, что подобное членение есть членение на части, а различие элементов и единиц возникает уже позднее, на его основе.

Проследить историю выделения этих понятий – важная задача. Это предмет детальных и скрупулезных исследований. Но некоторые моменты уже сейчас стали для нас понятны. Выяснилось, в частности, что различение элементов и единиц становится необходимым, когда мы переходим к анализу структур и к логике исследования структур.

Чтобы не входить сейчас в обсуждение формальных определений структуры, я воспользуюсь тем самым образом, который был введен выше. Я могу сказать в этой связи, что структура – это и есть то зеркало, которое я восстановил из разбитых кусочков с помощью стерженьков связи. Действительно, ведь вновь собранное из осколков зеркало состоит не только из осколков самого зеркала, но также и из стерженьков, т.е. образований, отличных от зеркала, и, более того, образований, которые нужно скрыть, или, иначе, ввести в целое таким образом, чтобы они не мешали "глядеться" в зеркало.

Вы легко можете заметить, что именно здесь и возникает то различие между интересующими нас свойствами целого и свойствами, которыми обладают элементы. Зеркало должно отражать лучи света, а стерженьки их не отражают. Именно здесь и возникают необходимость различения единиц и элементов и весь гигантский круг проблем, которые с этим связаны.

Стерженьки участвуют в зеркале, но таким образом, что их свойства не сказываются на свойствах целого, не "портят" их. Легко заметить, что разобранный нами пример Выготского по ряду характеристик точно совпадает с этим примером. Только, наверное, если рассматривать материал, привлеченный Выготским, не как иллюстрацию его мысли, а как пример для анализа, то там разных уровней членения будет значительно больше.

Анализируя историю этих различений, нужно будет разобрать среди прочего также и знаменитый спор Бертоле и Пру (первое десятилетие XIX столетия), связанный с различением понятий соединения и смеси. Потом сюда обязательно войдут работы Курнакова по физико-химическому анализу, его теория металлических соединений. Затем современная теория кристаллов как больших молекул, дискуссии 1944-1952 гг. Весь этот физико-химический материал должен быть уложен в рамки общих логических различений и схем.

Как уже стало сейчас совершенно ясно, решение физических и химических проблем упирается прежде всего в отсутствие общих логических решений, в отсутствие того аппарата понятийных средств, который позволил бы нам двигаться в новом сложном материале и удовлетворительным образом описывать его в знаковых рассуждениях и структурах. Но все это может быть достигнуто лишь при проведении специальных логико-методологических исследований, ориентированных на конкретную историю развития науки.

Нам сейчас важно представить в самом общем виде саму проблему. В каждом из сложных объектов подобного вида задано несколько уровней членения. В каждом есть свои элементы и связи, и все это производится для объяснения внешних характеристик целого и, следовательно, рассматривается с их точки зрения. Именно здесь и возникает проблема соотношения элементов и единиц. Это форма задания проблемы о связи различных уровней членения. По сути дела, мы таким образом задаем некоторые границы членения с точки зрения определенных, выделенных нами свойств целого. Эти границы определяются "глубиной" сохранения некоторых свойств целого, а затем "глубиной" определенных логических схем выведения и объяснения свойств целого из других свойств элементов и связей между ними.

Все сказанное выше имеет непосредственное отношение и к анализу процессов мышления, или рассуждения. Произвести анализ некоторого явления как процесса – это значит разложить это явление на части, а затем установить между частями определенные связи. Каждое такое разложение и представление изучаемого явления будет задавать некоторую модель на определенном уровне членения и, следовательно, в зависимости от глубины нашего членения мы должны будем приписывать частям процесса, или операциям, те или иные свойства и, соответственно, строить ту или иную схему выведения и объяснения свойств целого.

Когда мы членим процесс на части, то сначала у нас сохраняется исходно заданное свойство целого а. Но затем, при каком-то новом шаге членения это свойство у продуктов анализа, частей, исчезает, и мы получаем новое характерное свойство – b. Значит, при переходе через некоторую границу членения произошла потеря интересующего нас свойства. До тех пор пока мы находимся в границах сохранения исходной характеристики, мы говорим о единицах, как только мы переходим эту границу, мы начинаем говорить об элементах. Значит, другими словами, понятие элемента фиксирует то обстоятельство, что при членении целого на элементы мы должны терять свойство целого. Это, правда, еще не специфическое свойство элементов, но тем не менее их обязательная и необходимая характеристика.

Меня сейчас интересует, где и в каких пределах можно членить на единицы. Оказывается, что непременным условием такого членения является, по сути дела, проецирование рассматриваемого явления на прямую и, фактически, моделирование структурных отношений самого объекта и формально-логических отношений между свойствами целого и частей в этой линии и ее пространственно-материальной структуре.

Кстати, если вы рассмотрите с точки зрения этого различения многие дискуссии современной микрофизики, то они покажутся вам удивительно наивными и безграмотными. Между прочим, еще древние греки хорошо понимали формальную сторону подобных процедур членения и умели отделять то, что задано природой самого объекта от того, что задается и определяется формальными средствами нашего изображения. В нашей современной терминологии это прежде всего различение объекта и предмета исследования.

Кстати, О.Генисаретский сказал мне недавно, что в "Фейнмановских лекциях" фактически ставится вопрос об этом различии, хотя и нет необходимого решения. Это тем более удивительно, что уже древние умели решать подобные проблемы, во всяком случае в плане указанного выше разделения формальных и содержательных моментов.

Именно в этом плане сейчас приобрели важное значение и, по сути дела, обрели новую жизнь классические апории древних. Нетрудно заметить, что многие из этих апорий были, по сути дела, постановкой вопроса о том, насколько далеко можно продолжать одну и ту же операцию деления, оставаясь в пределах единиц и не переходя к элементам. Знаменитые предельные переходы геометрии и дифференциально-интегрального исчисления своим важнейшим моментом имели ту же самую проблему и были особым ее решением.

Фактически, при анализе этих апорий задавались, с одной стороны, возможность (постулированная совершенно формально) членения отрезка бесконечно с сохранением отношений единицы между целым и частями, а с другой – необходимость перехода к элементам, т.е. к образованиям, содержащим уже другие свойства и теряющим свойства целого. Именно это и составляло суть проблем этого рода. И это можно отчетливо понять, если рассмотреть с этой точки зрения галилеевские "Беседы", в частности обсуждение вопроса о существовании пустоты. При этом древние допускали очень много неточностей и ошибок с операциональной точки зрения.

Даже если мы возьмем отрезок как объектное тело с точки зрения операции, то нетрудно заметить: довольно скоро мы придем к такому результату, что вновь полученный отрезок, продукт деления, реально уже нельзя будет делить; мы перейдем таким образом к элементу целого. Вопреки этому практическому результату древние постулировали, что продукт деления всегда остается единицей. Тем самым они отделяли друг от друга (фактически) практические операции с объектами и формальные операции со знаками, они наделяли формальные операции новыми абстрактными качествами, так же как и объекты этих формальных операций. В результате мир идеальных знаковых образований отделялся от мира вещей и приобретал особое, непохожее ни на что другое, существование. Когда же затем эти два мира и две оперативных системы соотносились друг с другом непосредственно, можно сказать, накладывались друг на друга, или же соотносились с иными оперативными системами, то возникали разного рода парадоксы.

Характеристики

Тип файла
Документ
Размер
419,1 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее