327911 (691018), страница 3
Текст из файла (страница 3)
Рассчитаем толщину обечайки по формуле (3.1):
м, (3.1)
где м – внутренний диаметр обечайки;
МПа – внутренне избыточное давление;
МН/м2 – допускаемое напряжение на растяжение для стали Ст3 [6, рис. IV.1];
- коэффициент, учитывающий ослабление обечайки из-за сварного шва;
м – запас на коррозию;
м.
3.2 РАСЧЁТ И ПОДБОР ШТУЦЕРОВ
-
Определяем диаметр условного прохода (внутренний диаметр) штуцеров для подвода горячего теплоносителя (пара) по формуле (3.2) [5]:
м, (3.2)
где м/с [5];
кг/с;
кг/м3.
По [7] округляем до ближайшего большего стандартного значения, т.е. мм.
По табл. 27.1 [7] выбираем штуцер 25 – 200 – А МН 4579-63, а к нему по табл. 27.2 выбираем фланец типа I мм ГОСТ 1235-67.
-
Определяем диаметр условного прохода (внутренний диаметр) штуцеров для отвода конденсата пара по формуле (3.3) [5]:
м, (3.3)
где м/с [5];
кг/с;
кг/м3.
По [7] округляем до ближайшего большего стандартного значения, т.е. мм.
По табл. 27.1 [7] выбираем штуцер 25 – 100 – А МН 4579-63, а к нему по табл. 27.2 выбираем фланец типа I мм ГОСТ 1235-67.
-
Определяем диаметр условного прохода (внутренний диаметр) штуцеров для подвода и отвода холодного теплоносителя по формуле (3.4) [5]:
м, (3.4)
где м/с [5];
кг/с;
кг/м3.
По [7] округляем до ближайшего большего стандартного значения, т.е. мм.
По табл. 27.1 [7] выбираем штуцер 1,6 – 150 – А МН 4579-63, а к нему по табл. 27.2 выбираем фланец типа I мм ГОСТ 1235-67.
3.3 РАСЧЁТ ТОЛЩИНЫ ТРУБНОЙ РЕШЁТКИ
В среднем толщина трубной решётки составляет от 15 до 35 мм.
Толщину трубной решётки рассчитываем ориентировочно по формуле (3.5) [5]:
м, (3.5)
где м.
Принимаем по [7] мм.
Причём, шаг между трубами рассчитываем по формуле (3.6) [6]:
м. (3.6)
Трубы в трубной решётке размещают по вершинам равносторонних треугольников, закрепляя их развальцовкой.
При этом число труб на диаметре решётки определим по общему числу труб:
,
где .
3.4 РАСЧЁТ ОПОР АППАРАТА
-
Определяем объём трубного пространства по формуле (3.7):
м3, (3.7)
где м;
;
.
-
Определяем объём межтрубного пространства по формуле (3.8):
м3. (3.8)
-
Определяем массу холодного теплоносителя по формуле (3.9):
кг, (3.9)
где кг/м3.
-
Определяем массу корпуса аппарата по формуле (3.10):
кг, (3.10)
где кг/м3;
м.
-
Определяем массу труб по формуле (3.11):
кг. (3.11)
-
Масса всех штуцеров, крышек, фланцев и трубной решётки составляет [7]
кг.
-
Рассчитываем вес всего аппарата по формуле (3.12):
Н. (3.12)
-
Т. к. всего у нас четыре опоры, то вес, приходящий на одну опору определим по формуле (3.13):
Н. (3.13)
По табл. 29.2 [7] подбираем стандартные стальные опоры к корпусу аппарата (OB – II – Б – 400 – 6 OH).
3.5 РАСЧЁТ И ПОДБОР ДНИЩА И КРЫШКИ АППАРАТА
Для данного аппарата подбираем по табл. 16.1 [7] два стандартных эллиптических отбортованных стальных днища типа: днище ГОСТ 6533 – 68. Причём толщину днищ выбираем в соответствии с толщиной обечайки.
Для днищ по табл. 21.9. [7] подбираем цельные фланцы типа I мм ГОСТ 1235-67.
ЗАКЛЮЧЕНИЕ
По данному курсовому проекту были произведены тепловой, гидравлический и конструктивно-механический расчёты теплообменного аппарата (подогревателя), необходимого для нагревания смеси ацетон-вода до температуры кипения насыщенным водяным паром.
Вследствие чего по стандартным каталогам (ГОСТ 15118-79, ГОСТ 15120-79 и ГОСТ 15122-79) был выбран кожухотрубчатый вертикальный теплообменник с неподвижными трубными решётками со следующими основными характеристиками [1]:
Внутренний диаметр кожуха | Число труб на один ход, | Длина труб | Пов-сть теплообмена |
| мм | Трубы мм | Число ходов,
|
600 | 120 | 4,0 | 75 | 16 | 300 | 25x2 | 2 |
Рассчитана тепловая изоляция для него:
мм – материал: шерстяной войлок.
Для подачи холодного теплоносителя (смесь: ацетон-вода) в аппарат подобран центробежный насос марки Х45/21.
Также подобраны диаметры штуцеров для данного теплообменного аппарата:
-
для ввода насыщенного водяного пара – 0,2 м;
-
для отвода конденсата – 0,1 м;
-
для ввода и отвода смеси ацетон-вода – 0,15 м.
В данном теплообменнике трубы, изготовленные из стали Ст3, расположены по вершинам равносторонних треугольников и закреплены в трубной решётке развальцовкой.
В месте подачи насыщенного водяного пара и отвода конденсата прикреплены два отбойника для предотвращения эрозии и износа труб.
Теплообменник установлен на четыре опоры типа OB – II – Б – 400 – 6 OH.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
-
Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Учебное пособие для вузов/Под ред. чл.-корр. АН СССР П.Г. Романкова. – 10-е изд., перераб. и доп. – Л.: Химия, 1987. – 576 с., ил.
-
Методические указания к курсовому проектированию для студентов химико-технологического и заочного энерго-механического факультетов в 2-х частях. – Ч. I. Тепловой расчёт/Гусев В.П., Гусева Ж.А. – Томск: ТПУ, 1996. – 42 с.
-
Кожухотрубный теплообменник. Методические указания к выполнению лабораторных работ для студентов всех специальностей химико-технологического факультета/А.Г. Пьянков, В.В. Тихонов. – Томск: ТПУ, 2005. – 24 с.
-
Касаткин А.Г. Основные процессы и аппараты химической технологии. Учебник для химико-технологических вузов. – 8-е изд. перераб. – М.: Химия, 1971. – 784 с., ил.
-
Методические указания к курсовому проектированию для студентов химико-технологического и заочного энерго-механического факультетов в 2-х частях. – Ч. II. Гидравлический и конструктивно-механический расчёты/Гусев В.П., Гусева Ж.А. – Томск: ТПУ, 1996. – 32 с.
-
Основные процессы и аппараты химической технологии: Пособие по проектированию/Под ред. Ю.И. Дытнерского. – М.: Химия, 1983. – 272 с., ил.
-
Лащинский А.А., Толчинский А.Р. Основы конструирования и расчёта химической аппаратуры. Справочник/Под ред. инж. Н.Н. Логинова. – 2-е изд. перераб. и доп. – Л.: Машиностроение, 1970. – 752 с., ил.
Размещено на Allbest.ru