126251 (690982), страница 2

Файл №690982 126251 (Проектирование компрессионного холодильного оборудования) 2 страница126251 (690982) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Наибольшее распространение получил процесс ис­пользования скрытой теплоты парообразования жидкостей, кипящих при низких температурах. Такие жидкости получили название холодильных агрегатов. Перенос тепла осуществляется в специальном устройстве, называемом холодильной машиной.

Ледяное охлаждение. Ледяное охлаждение является самым простым способом охлаждения продуктов питания, физическую основу которого составляет процесс плавления льда и снега. В зависимости от способа получения лед бывает естественным или искусственным. Ледяное охлаждение применяется в сооружениях, на­зываемых ледниками, они могут иметь различное размещение льда по отношению к охлаждаемым камерам с продуктами. Однако широкое применение получили ледники с боковым размещением льда. Лед закладывают в таком количестве, чтобы его хватило на определенное время, и объем его должен быть в 4—5 раз больше объема камер >с продуктами. При ледяном способе можно понизить температуру до 6—8 °С с влажностью 90—95%.

Льдосоленое охлаждение. Источником холода является смесь льда и поваренной соли. Чем больше соли, тем ниже температура смеси. Понижение температуры происходит до определенного предела. Самая низкая температура льда с поваренной солью составляет — 20—21 'С. Подсоленная смесь позволяет создавать в охлажденной среде более низкие температуры по сравнению с ледяным охлаждением.

Охлаждение сухим льдом. Этот способ основан на суб­лимации твердой углекислоты. Сухой лед — твердая уг­лекислота, которая по внешнему виду представляет собой куски вещества, похожего на мел, но очень холодные и быстро испаряющиеся при обычной температуре. В обычных условиях он из твердого состояния превращается непосредственно в парообразное. При этом температура понижается до — 78-90 °С. Холодопроизводительность сухого льда в 1,9 раза больше водяного. Сухой лед очень удобен для охлаждения продуктов, так как не выделяет влаги, не загрязняет продукты, имеет низкую температуру. Однако применение его ограничено из-за сравнительно высокой температуры окружающей среды.

Для обеспечения нормального режима хранения продуктов в малом холодильном оборудовании (шкафах, прилавках, витринах и т. д.) необходимо соблюдать следующие требования:

— загружать продуты только после достижения заданной температуры в шкафу, прилавке, витрине;

— скоропортящиеся продукты, поступающие из холодильных камер, загружать в охлажденном состоянии;

— горячие блюда (молоко, закуски, компоты) устанавливать в шкафах, прилавках, витринах после предварительного их охлаждения до температуры окружающего воздуха;

— не превышать допустимую максимальную норму загрузки;

— не покрывать бумагой, марлей, фанерой полки шкафов, прилавков и камер, что препятствует свободному движению воздуха и нормальному охлаждению продуктов;

— укладывать и подвешивать продукты на некотором расстоянии друг от друга и на расстоянии от стенок 6-10 см;

— не хранить одновременно разнородные продукты, одни из которых обладают резким запахом (например, сельдь и сливочное масло, мясо и сыр, рыбу и мясо);

— открывать- двери шкафов, прилавков, камер следует возможно реже и на короткий срок, а затем плотно закрыть их.

Для проверки температуры в шкафу, прилавке, витрине, сборной и стационарной камерах устанавливают термометры.

Слой снеговой шубы на испарителях не должен превышать 4-5 мм. Между ребрами испарителя всегда должно быть свободное от инея пространство. При толщине инея 4—5 мм оттаивают иней с приборов охлаждения.

Недопустимо удалять снеговую шубу с испарителей ножами, скребками и другими предметами — это приводит к повреждению испарителей, утечке фреона из системы холодильной машины и выходу ее из строя. Если в холодильном оборудовании нет продуктов, то холодильные машины выключают.


2. компрессорные холодильные машины

Нами приведены лишь общие данные о новых компрессорных машинах, необходимые для определения основных размеров холодильных установок и станций, расходов энергии и воды в объеме, необходимом для начальных стадий проектирования СКВ. Принципиальные схемы фреоновых поршневых холодильных машин приведены на рис. 1. Перегретые пары хладагента засасываются из испарителя компрессором и поступают в конденсатор — водяной (рис. 1, а) или воздушный (рис. 1,б).

Рис. 12.10. Принципиальные схемы фреоновых поршневых холодильных машин

а — с конденсатором водяного охлаждения;

б — с конденсатором воздушного охлаждения;

1 — испаритель; 2 — компрессор;

3 — конденсатор водяного или воздушного охлаждения;

4 — запорный вентиль; 5 — ресивер;

6 — фильтр-осушитель; 7 — соленоидный вентиль;

8 — терморегулирующий вентиль;

РД — реле давления; РКС — реле контроля смазки;

г — газообразный фреон; ж — жидкий фреон; м — масло


Далее жидкий хладагент, пройдя через запорный вентиль 4, из воздушного конденсатора попадает в ресивер, а из водяного — прямо в фильтр–осушитель. Затем через соленоидный вентиль 7 и терморегулирующий вентиль 8 хладагент направляется в испаритель. Режим работы холодильной машины определяется температурами: 1) кипения хладагента t0, которая задается исходя из условий работы СКВ; 2) конденсации tк, принимаемой на 3–4° выше температуры воды, уходящей из конденсаторов; 3) переохлаждения агента tп, принимаемой на 1–2° выше начальной температуры воды, подаваемой в конденсаторы. Сравнение производительно-стей холодильных машин заключается в приведении их к одинаковым условиям, т.е. к одинако вым температурам испарения t0, всасывания tв, конденсации tк, а также к температуре перед регулирующим вентилем tb Вместо четырех сравнительных температур часто пользуются только тремя: t0, tк, tb. Расчет холодильной машины производится с помощью схемы холодильного цикла, который строят на I–lgp диаграмме (рис. 2.).

Рис.2. Цикл холодильной машины в энтальпийной I–lgp—диаграмме

1–2 — адиабатическое сжатие;

2–2′ — охлаждение в конденсаторе при tк = const;

2′–3′ — конденсация при tK—const;

3′–3 — переохлаждение хладагента до температуры tn;

3–4 — дросселирование при I = const;

4 — I – кипение хладагента в испарителе при t0 = const и p0

На правой пограничной кривой находят точку 1, руководствуясь заданной температурой кипения хладагента t0. Из этой точки проводят адиабату, характеризующую сжатие паров в компрессоре, до пересечения с прямой, характеризующей постоянное давление в конденсаторе рк которое соответствует заданной температуре конденсации хладагента tк. В результате получают точку 2, характеризующую параметры паров хладагента при выходе из компрессора. Процесс в конденсаторе и переохладителе изображают прямой 2–3, которая характеризуется постоянным давлением рк и тремя различными температурами: постоянной температурой конденсации на участке 2′–3′, более высокой температурой паров после компрессора t2 и более низкой температурой при выходе жидкого хладагента из переохладителя t3. Положение точки 3 определяется давлением pк и температурой t3. Из точки 3 проводят вниз вертикальную прямую 3–4, представляющую собой процесс дросселирования в регулирующем вентиле при постоянной энтальпии I3 = I4. Положение точки 4 определяется пересечением прямых I3 и р0. Из схемы процесса находят энтальпии, кДж ⁄ кг, и давления, МПа: в точке 1 — энтальпию I1 давление р1; в точке 2 — энтальпию I2 и давление р2; в точке 3 — энтальпию I3; в точке 3′ — энтальпию I3′; в точке 4 — энтальпию I4. Кроме того, в точке 1 находят удельный объем паров V1 м3 ⁄ кг.

На основании этих данных определяют, кДж ⁄ кг:

удельную холодопроизводительность хладагента

q0 = I1 − I4

тепловой эквивалент работы сжатия

Al = I2 − I1

удельное количество тепла, отданное в конденсаторе и переохладителе,

q = I2 − I3

в том числе в переохладителе

qпх = I3′ − I3

Экономичность работы холодильных компрессорных машин характеризуется количеством тепла, отводимого на единицу затраченной работы, — так называемым холодильным коэффициентом

εт = (I1 − I4)(I2 − I1)

Холодопроизводительность машины, кВт,

Q0 = G·q0

где G — расход хладагента, кг ⁄ с, циркулирующего в машине.

Расход паров хладагента, м3 ⁄ с, которые должны засасываться в компрессор для обеспечения заданной холодопроизводительности,

Vд = G·V1

где V1 — удельный расход хладагента при всасывании паров в компрессор, м3 ⁄ кг.

Действительный расход хладагента при всасывании, который может подать данный компрессор, определяется объемом, описываемым поршнями Vh, м3 ⁄ с, и коэффициентом подачи λ = Vд ⁄ Vh, являющимся отношением действительного количества паров хладагента Vд, поступающих в компрессор, к теоретическому количеству Vh. Коэффициент λ зависит от конструкции компрессора и находится в сложной зависимости от ряда факторов, но при прочих равных условиях является функцией соотношения давлений в конденсаторе и испарителе:

λ = φ·(pк ⁄ p0)

При известной величине Я выбор холодильного компрессора следует производить, руководствуясь условием

λ·Vh ≥ Vд

Тепловая нагрузка, кВт, на конденсатор определяется по формуле

Qк = G·qк = G·(I2 − I4)

Теоретическая мощность двигателя, кВт, для привода холодильной машины

Nтеор = Q0 ⁄ εт

холодопроизводительности фреоновых водоохлаждающих машин Q0, кВт, и потребляемой мощности Nэ, кВт, от температуры, °С: tв1 — охлаждающей среды (воды, воздуха) на входе в конденсатор; tв1 — хладоносителя на выходе из испарителя.

Холодопроизводительность компрессорной холодильной машины может быть определена также путем перерасчета номинальной (стандартной) производительности, которая приводится в каталогах, в рабочую производительность, кВт

qн.Vн = (I1н − I4) ⁄ V1,0 -

удельная объемная холодопроизводительность хладагента при номинальных условиях, кДж ⁄ м3; q0,V0 = (I1н − I4н ⁄ V1н — удельная объемная холодопроизводительность хладагента при рабочих условиях, кДж ⁄ м3; I1н, I1 — энтальпия хладагента в точке 4 (см. рис. 12.11) при номинальных и рабочих условиях, кДж ⁄ кг; I4н, I4 — энтальпия хладагента в точке 4 (см. рис 12.11) при номинальных и рабочих условиях, кДж ⁄ кг.

В настоящее время рекомендуется применять холодильные машины с поршневыми компрессорами при холодопроизводительности до 400 кВт; при производительности 450–1200 кВт следует пользоваться машинами с винтовыми компрессорами, производство которых недавно началось, или поршневыми компрессорами, а при больших нагрузках устраивать холодильные станции с центробежными компрессорами. При потребности в холоде до 350 кВт целесообразно применять децентрализованные компрессорно–конденсаторные фреоновые агрегаты с воздухоохладителями непосредственного испарения производительностью 74–144.5 кВт/

Эти агрегаты имеют конденсаторы водяного охлаждения и выпускаются в готовом виде с электродвигателем, пусковыми устройствами и приборами автоматики. В СКВ их используют по схеме, приведенной на рис. 12.4. Автоматика позволяет поддерживать заданную температуру на выходе воздуха из воздухоохладителя с точностью ±0.1,±0.2°С, и только при резком изменении нагрузки отклонение температуры может достигнуть 1–3°.

Децентрализация холодоснабжения практически вдвое уменьшает капитальные затраты и эксплуатационные расходы за счет снижения потерь холода в трубопроводах и аппаратах, исключения расходов электроэнергии на насосы и снижения мощности, потребляемой компрессором, вследствие повышения температуры кипения хладагента приблизительно на 5°С. Уменьшаются также затраты на амортизацию и ремонт оборудования.

Для центральных и местных СКВ рекомендуется применять водоохлаждающие холодильные машины, состоящие (в полной заводской готовности) из компрессора, испарителя, конденсатора, внутренних коммуникаций, арматуры, электрооборудования и автоматики.

3. Устройство и принцип действия компрессионной холодильной машины

Компрессионная холодильная машина состоит из следующих основных узлов: испарителя, компрессора, конденсатора, ресивера, фильтра, терморегулирующего вентиля. Автоматическое действие машины обеспечивается терморегулирующим вентилем и регулятором давления. К вспомогательным аппаратам, способствующим повышению экономичности и надежности работы машины, относятся: ресивер, фильтр, теплообменник, осушитель. Машина приводится в действие электродвигателем.

Испаритель — охлаждающая батарея, которая поглощает тепло окружающей среды за счет кипящего в ней при низкой температуре хладагента. В зависимости от вида охлаждаемой среды различают испарители для охлаждения жидкости и воздуха. Компрессор предназначен для отсасывания паров хладагента из испарителя, сжатия и нагнетания их в перегретом состоянии в конденсатор. В малых холодильных машинах применяют поршневые и ротационные компрессоры, причем наибольшее распространение получили поршневые. Конденсатор — теплообменный аппарат, служащий для сжижения паров хладагента путем их охлаждения. По виду охлаждающей среды конденсаторы выпускают с водяным и воздушным охлаждением. Конденсаторы с принудительным движением воздуха имеют вертикально расположенные плоские змеевики из медных или стальных оребренных труб. Естественное воздушное охлаждение применяется только в холодильных машинах бытовых электрохолодильников. Конденсаторы с водяным охлаждением бывают кожухозмеевиковые и кожухотрубные.

Ресивер — резервуар, служащий для сбора жидкого хладагента с целью обеспечения его равномерного поступления к терморегулирующему вентилю и в испаритель. В малых хладоновых машинах ресивер предназначен для сбора хладагента во время ремонта машины. Фильтр состоит из медных или латунных сеток и суконных прокладок. Он служит для очистки системы и хладагента от механических загрязнений, образовавшихся в результате недостаточной очистки их при изготовлении, монтаже и ремонте. Фильтры бывают жидкостные и паровые. Жидкостный фильтр устанавливается после ресивера перед терморегулирующим вентилем, паровой — на всасывающей линии компрессора. Для предотвращения попадания ржавчины и механических частиц в цилиндры малых фреоновых холодильных машин, во всасывающую полость компрессора вставляют фильтр в виде стаканчика из латунной сетки.

Характеристики

Тип файла
Документ
Размер
1,89 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6366
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее