125927 (690765), страница 2
Текст из файла (страница 2)
Загружаемые в доменную печь руды содержат железо в виде окислов, т. е. в соединении с кислородом. Для того чтобы получить железо, необходимо отнять этот кислород, т. е. провести восстановление. В доменной печи основными восстановителями являются углерод С и окись углерода СО. Часть углерода расходуется для науглероживания восстановленного железа и получения чугуна. Необходимо также, чтобы в печи поддерживалась температура, достаточная для расплавления образовавшихся чугуна и шлака. Тепла, выделяющегося при горении углерода, должно быть достаточно для осуществления всех реакций, идущих с поглощением тепла.
Используемое топливо должно обладать высокой теплотой сгорания, содержать, возможно, меньшее количество вредных примесей (серы, фосфора) и золы, быть пористым (что облегчаем его сжигание) и достаточно прочным.
В настоящее время основным видом топлива, используемого для доменной плавки, является кокс. Коксом называется твердая спекшаяся масса, остающаяся после удаления из каменного угля летучих веществ путем прокаливания его без доступа шелуха при 900—1100°. Хороший кокс имеет светло-серый цвет, недодержит мусора, непропекшейся массы, не пачкает рук, имеет мало трещин.
Готовая продукция доменного цеха – чугун, который широко применяется практически во всех отраслях промышленности. Основные виды чугуна, выплавляемого в доменных печах: передельный чугун, используемый для производства стали в сталеплавильных агрегатах; литейный, идущий для чугунных отливок; специальные чугуны. Побочные продукты доменного производства: доменный газ [теплота сгорания 3,6—4,6 Мдж/м3 (850—1100 ккал/м3)] после очистки от пыли используется для нагрева дутья в воздухонагревателях, а также в заводских котельных установках, коксохимических, агломерационных и некоторых других цехах; доменный шлак находит применение главным образом в промышленности строительных материалов; колошниковая пыль, выносимая из печи и улавливаемая системой газоочистки, содержащая 30—50% Fe, возвращается в шихту доменных печей после её предварительного окускования (главным образом путём агломерации).
Описав сырье, можно рассмотреть технология производства.
1.4 Описание технологии производства
В данном подразделе приведена технология производства доменного производства, а также схема технологии производства и пояснения к ней. Также я опишу химическую технологию производства. Схема технологии производства приведена на рисунке 1.6.
Технология производства чугуна – сложный процесс, состоящий из множества этапов, которые имеют определенную последовательность. Эти этапы изображены на рисунке 1.4 Технология состоит из:
Поставщик (Блок 1) поставляет сырье саморазгружающимися вагонами на разгрузочную эстокаду (Блок 2), которая передает сырье на поле рудного двора (Блок 3).
Вагоноопрокидователи передают сырье на бункерную эстокаду (Блок 4). Подача исходных материалов на засыпной аппарат (Блок 6) имеет также свой этап:
Из бункера (Блок 4) скипами железная руда, окатыши, марганцевая руда поступает на засыпной аппарат (Блок 6).
-
Из бункера (Блок 6) транспортерами кокс поступает на засыпной аппарат (блок 6).
-
Из аглофабрики (Блок 4) скипами агломерат поступает также на загрузочный аппарат (блок 6).
С помощью засыпного аппарата (блок 6) кокс, железная руда, агломерат, марганцевая руда поступает на колошниковое устройство (Блок 7), которое передает исходное сырье в шахту (Блок 8), где происходят химическим преобразованиям и основной процесс окисления и восстановления под действием плавки и горения. Фурменные устройства (Блок 9) подают топливо в печь, которое активно участвует в процессе горения. Воздуходувные машины (Блок 10), подают воздух на воздухонагревательные устройства, которые нагреваются за счет охлаждения насадки. Насадки нагревают за счет горения газа, который поступает за счет газоподавательных устройств (Блок 12). В процессе плавки происходят множество химических реакций, и в результате смесь стекает в горн (Блок 13), где специальным образом распределяется на чугун и шлак, которые выводятся через летки (блок 14 и Блок 15) и стекают по желобу (Блок 16 и Блок 17) на разливочные машины (Блок 18 и Блок 19). Желоб (Блок 16 и Блок 17) подает жидкий чугун и шлак на разливочные машины (Блок 18 и Блок 19), которые разливают их в ковши для чугуна (блок 20) и ковши для шлака (Блок 21). Эти ковши отправляются чугуновозами (Блок 22) и шлаковозами (блок 23) для дальнейшей обработки. В данном случае чугун передается в сталеплавительный цех (24), где производится сталь, а шлак передается на шлаковую гору (25), где заказчики приобретают шлак для строительных нужд.
В процессе плавления выделяемый газ в печи выходит через трубы газоотводов, а пылеуловители улавливают пыль, которая возникает в результате колошникового преобразования.
Основные химические процессы в доменной печи — горение топлива и восстановление Fe, Si, Mn и др. элементов. Часть кокса расходуется на процессы восстановления, но основное количество опускается в горн и сгорает вместе с вдуваемым топливом у фурм. Газы с температурой 1600—2300° С, содержащие 35—45% CO, 1—12% H2 и 45—65% N2, поднимаясь по печи, нагревают опускающуюся шахту, при этом CO и H2 частично окисляются до CO2 и H2O. Газы, выходящие из печи, имеют t 150—300°С.
Горение у фурм. У фурм доменной печи возникают очаги горения, называемые окислительными зонами, в которых вихревое движение газов приводит к циркуляции кусков кокса. Горение кокса развивается на поверхности контакта твёрдой и газообразной фаз. При этом кислород соединяется с углеродом в сложные комплексы СхОу, которые затем распадаются. В упрощённом виде суммарный процесс горения углерода твёрдого топлива у фурм сводится к экзотермической реакции 2C + O2 = 2CO. При вдувании природного газа или мазута, в которых главной составляющей являются углеводороды (например, метан), протекает реакция с выделением CO и H2; при этом поглощается значительная часть тепла, выделяемого при сжигании С, а следовательно, понижается температура горения у фурм. Во избежание этого необходимо повышать температуру дутья и обогащать его кислородом. Положительное влияние вдувания углеводородных топлив — в повышении концентрации водорода в газе и улучшении благодаря этому его восстановительной способности.
Восстановление железа и др. элементов. В доменной печи Cu, As, Р, подобно Fe, восстанавливаясь, почти полностью переходят в чугун. Полностью восстанавливается и Zn, который затем возгоняется, переходит в газы и отлагается в порах кладки, вызывая её разрушение. Те элементы, которые образуют более прочные соединения с кислородом, чем Fe, восстанавливаются частично или совсем не восстанавливаются: V восстанавливается на 75—90%, Mn на 40—75%, Si и Ti в небольших количествах, Al, Mg и Ca не восстанавливаются.
Восстановление поступающих в доменную печь окислов Fe2O3 и Fe3O4 происходит путём последовательного отщепления кислорода по реакциям:
3Fe2O3 + CO (H2) = 2Fe3O4 + CO2 (H2O),
Fe3O4 + CO (H2) = 3FeO + CO2 (H2O).
Закись железа FeO восстанавливается до Fe газами (косвенное восстановление) и углеродом (прямое восстановление).
FeO + CO (H2) = Fe + CO2 (H2O),
FeO + C = Fe + CO (1)
Высшие окислы марганца MnO2, Mn2O3 и Mn3O4 восстанавливаются газами с выделением тепла. В дальнейшем MnO восстанавливается до Mn только углеродом с затратой тепла примерно в 2 раза большей, чем при восстановлении Fe. Si также восстанавливается только С при высоких температурах по эндотермической реакции:
SiO2 + 2C + Fe = FeSi + 2CO.
Степень восстановления Si и Mn зависит в основном от расхода кокса; на каждый процент повышения содержания Si в чугуне расход кокса увеличивается на 5—7%, что увеличивает количество горячих газов в печи, вызывая перегрев шахты. Обогащение дутья кислородом, обеспечивая высокий нагрев горна, уменьшает количество образующихся газов, а следовательно, и температуру в шахте печи.
Сера в доменном процессе. S вносится в доменную печь в основном коксом и переходит в газы в виде паров (SO2, H2S и др.), но большая часть остаётся в шихте (в виде FeS и CaS); при этом FeS растворяется в чугуне. Для удаления S из чугуна необходимо перевести её в соединения, нерастворимые в чугуне, например в CaS:
FeS + CaO = CaS + FeO. (2)
Это достигается образованием в доменной печи жидкоподвижных шлаков с повышенным содержанием СаО. Восстановительная среда благоприятно влияет на этот процесс, т.к. снижает содержание FeO в шлаке. Степень обессеривания достаточно высока, и только в некоторых случаях чугун дополнительно обессеривается вне доменной печи различными реагентами.
Образование чугуна и шлака. Восстановленное в доменной печи Fe частично науглероживается в твёрдом, а затем в жидком состояниях. Содержание C в чугуне зависит от температуры чугуна и его состава. Шлак состоит из невосстановившихся окислов SiO2, AI2O3 и СаО (90—95%), MgO (2—10%), FeO (0,1—0,4%), MnO (0,3—3%), а также 1,5—2,5% S (главным образом в виде CaS). Для характеристики шлаков пользуются обычно показателем основности CaO/SiO2 или (СаО + MgO)/SiO2. Основность CaO/SiO2 для разных условий плавки колеблется в пределах 0,95—1,35%. При выплавке чугуна на коксе с повышенным содержанием S (донецкий кокс) работают на шлаках с верхним пределом основности и стремятся обеспечить содержание MgO в шлаке 6—8% и более, улучшая его жидкоподвижность.
Определив объект управления можно перейти к постановке задачи.
1.5 Постановка задачи
Данный подраздел содержит постановку задачи, которая заключается в разработке логико-формальной и сетевой модели. Для этого необходимо представить структуру объекта управления в виде графов, сформировать матрицы смежности, классифицировать переменные, построить множества, а также составить логические взаимосвязи.
2. Разроботка структурной модели объекта управления (в виде графов)
В данном разделе будет разрабатываться сетевая модель. Я постараюсь представить структуру управления в виде графов, направление ребер которого будет определено технологией получения чугуна. Для этого нам понадобиться предыдущая глава (подпункт 1.2 и 1.4). Также в этой главе, по полученному графу составим матрицу связности вершин и ребер, и матрицу инцидентности.
2.1 Представление структуры объекта управления (в виде графов)
В данном пункте будет составлен граф структуры объекта управления, который основывается на схему технологии производства (Рисунок 1.4.1).
Составим таблицу эквивалентности вершин и дуг для изображения ориентированного графа.
| Оборудование (вершины) | Эквивалентная единица |
| Поставщик | V1 |
| Разгрузочная эстокада | V2 |
| Рудный двор | V3 |
| Бункера | V4 |
| Аглофабрика | V5 |
| Загрузочное устройство | V6 |
| Колошниковое устройство | V7 |
| Шахта | V8 |
| Фурменные устройства | V9 |
| Воздуходувные машины | V10 |
| Воздухонагревательное устройство | V11 |
| Газоподавательные устройства | V12 |
| Горн | V13 |
| Летки (для чугуна) | V14 |
| Летки (для шлака) | V15 |
| Желоб (для чугуна) | V16 |
| Желоб (для шлака) | V17 |
| Чугуноразливочная машина | V18 |
| Шлакоразливочная машина | V19 |
| Ковши для чугуна | V20 |
| Ковши для шлака | V21 |
| Чугуновозы | V22 |
| Шлаковозы | V23 |
| Сталеплавительный цех | V24 |
| Шлаковая гора | V25 |
| Пылеуловитель | V26 |
| Трубы для газоотводов | V27 |
Т
аблица 2.1 - Эквивалентность вершин
| Потоки материала (дуги) | Эквивалентные еденицы |
| Сырье (саморазгружающие вагоны) | E1 |
| Сырье (разгрузка) Сырье (вагоноопракидователями) | E2 E3 |
| Железная руда, окатыш, марг. руда (скипами) | E4 |
| Кокс (транспортерами) | E5 |
| Агломират (скипами) | E6 |
| Кокс, железные руды, флюсы (аппарат засыпания) | E7 |
| Кокс, железные руды, флюсы | E8 |
| Топливо | E9 |
| Воздух | E10 |
| Воздух (t) | E11 |
| Газ | E12 |
| Жидкий железняк и чугун | E13 |
| Чугун | E14 |
| Шлак | E15 |
| Чугун | E16 |
| Шлак | E17 |
| Чугун | E18 |
| Шлак | E19 |
| Чугун | E20 |
| Шлак | E21 |
| Чугун | E22 |
| Шлак | E23 |
| Шлак | E23 |
| Чугун | E24 |
| Шлак | E25 |
| Пыль | E26 |
Таблица 2.2 -Эквивалентности дуг















