125823 (690706), страница 3
Текст из файла (страница 3)
Активный объём топочной камеры определяют по формуле:
Эффективная толщина излучающего слоя:
5.2 Расчёт теплообмена в топке
Расчёт основан на приложении теории подобия к топочным процессам. Расчётная формула связывает температуру газов на выходе из топки т’’ с критерием Больцмана Bo, степенью черноты топки ат и параметром М, учитывающим характер распределения температур по высоте топки и зависящим от относительного местоположения максимума температур пламени, который определяется схемой размещения и типом горелок.
При расчёте теплообмена используют в качестве исходной формулу:
Где Tт’’ = т’’ + 273 - абсолютная температура газов на выходе из топки, [K]; Ta = a + 273 -температура газов, которая была бы при адиабатическом сгорании топлива, [K]; Bо – критерий Больцмана, определяемый по формуле:
Из этих формул выводятся расчетные.
Определяем полезное тепловыделение в топке Qт и соответствующую ей адиабатическую температуру горения Та :
Коэффициент ослабления лучей kг топочной средой определяют по номограмме.
Коэффициент ослабления лучей kс сажистыми частицами определяют по формуле:
6. Поверочный расчёт фестона
В котле, разрабатываемом в курсовом проекте, на выходе из топки расположен трёхрядный испарительный пучок, образованный трубами бокового топочного экрана, с увеличенным поперечными и продольными шагами и называемый фестон. Изменение конструкции фестона связано с большими трудностями и капитальными затратами, поэтому проводим поверочный расчёт фестона. Задачей поверочного расчёта является определение температуры газов за фестоном ф’’ при заданных конструктивных размерах и характеристиках поверхности нагрева, а также известной температуре газов перед фестоном, т.е на выходе из топки.
| Наименование величин | Обозн. | Раз-ть | Ряды фестона | Для всего фестона | |||
| 1 | 2 | 3 | |||||
| Наружный диаметр труб | d | м | 0,06 | ||||
| Количество труб в ряду | z1 | -- | 23 | 23 | 24 | - | |
| Длина трубы в ряду | lI | м | 2,3 | 2 | 1,275 | - | |
| Шаг труб: поперечный | S1 | м | 0,21 | 0,21 | 0,21 | 0,21 | |
| продольный | S2 | м | - | 0,35 | 0,775 | 0,5197 | |
| Угловой коэф фестона | xф | - | - | - | - | 1 | |
| Расположение труб | - | - | шахматное | ||||
| Расчётная пов-ть нагрева | H | м2 | 9,966 | 8,666 | 5,765 | 24,3977 | |
| Размеры газохода: высота | aI | м | 2,25 | 2,05 | 1,275 | - | |
| ширина | b | м | 5 | 5 | 5 | - | |
| Площадь живого сечения | F | м2 | 8,283 | 7,611 | 4,539 | 6,7646 | |
| Относительный шаг труб: поперечный | S1/d | - | 3,5 | 3,5 | 3,5 | 3,5 | |
| продольный | S2/d | - | - | 5,833 | 12,92 | 8,6616 | |
Длину трубы в каждом ряду li определяем по осевой линии трубы с учётом её конфигурации от плоскости входа трубы в обмуровку топки или изоляцию барабана до точки перечения оси трубы каждого ряда с плоскостью ската горизонтального газохода. Количество труб в ряду z1 определяют по эскизу, выполнив по всей ширине газохода разводку труб экрана в фестон.
Поперечный шаг S1 равен утроенному шагу заднего экрана топки, т.к. этот экран образует три ряда фестона. Поперечные шаги для всех рядов и всего фестона одинаковы. Продольный шаг между первым и вторым рядами определяют как кратчайшее расстояние между осями труб этих рядов S2’, а между вторым и третьим рядами S2’’ как длину отрезка между осями труб второго и третьего рядов, соединяющего их на половине длины труб. Среднее значение продольного шага для фестона определяют с учетом расчетных поверхностей второго и третьего рядов труб, существенно различающихся по величине:
Принимаем xф = 1, тем самым увеличиваем конвективную поверхность пароперегревателя (в пределах 5%), что существенно упрощает расчёт.
По S1ср и S2ср определяем эффективную толщину излучающего слоя фестона Sф расположение труб в пучке – шахматное, омывание газами – поперечное (угол отклонения потока от нормали не учитываем). Высоту газохода ‘а’ определяют в плоскости, проходящей по осям основного направления каждого ряда труб в границах фестона. Ширина газохода ‘b’ одинакова для всех рядов фестона, её определяют как расстояние между плоскостями, проходящими через оси труб правого и левого боковых экранов.
Площадь живого сечения для прохода газов в каждом ряду:
Fi = aib - z1 liпрd; где liпр – длина проекции трубы на плоскость сечения, проходящую через ось труб расчитываемого ряда.
Fср находим как среднее арифметическое между F1 и F3.
Расчётная поверхность нагрева каждого ряда равна геометрической поверхности всех труб в ряду по наружному диаметру и полной обогреваемой газами длине трубы, измеренной по её оси с учётом конфигурации, т.е гибов в пределах фестона:
Нi = dz1i li; где z1i – число труб в ряду; li – длина трубы в ряду по её оси. Расчётная поверхность нагрева фестона определяют как сумму поверхностей всех рядов:
Нф = Н1 + Н2 + Н3 = 9,966+8,666+5,765 = 24,3977 м;
На правой и левой стене газохода фестона расположена часть боковых экранов, поверхность которых не превышает 5% от поверхности фестона:
Ндоп = Fст·xб = (1,7062 + 1,7062)·0,99 = 3,3782 Нф’ = Нф + Ндоп = 27,776 м;
Составляем таблицу исходных данных для поверочного теплового расчёта фестона.
Ориентировочно принимают температуру газов за фестоном на 301000С ниже, чем перед ним:
| Наименование величин | Обозначение | Размерность | Величина |
| Температура газов перед фестоном | ф’=т’’ | 0С | 1053,4 |
| Энтальпия газов перед фестоном | I ф’=I т’’ | ккал/кг | 4885,534 |
| Объёмы газов на выходе из топки при т | Vг | м3/кг | 12,559 |
| Объёмная доля водяных паров | rH2O | -- | 0,1216 |
| Объёмная доля трёхатомных газов | rRO2 | -- | 0,2474 |
| Температура состояния насыщения при давлении в барабане Рб=45кгс/см2 | tн | 0С | 256,23 |
7. Определение тепловосприятий пароперегревателя, экономайзера, воздухоподогревателя и сведение теплового баланса парового котла
При выполнении расчёта в целях уменьшения ошибок и связанных с ними пересчётов до проведения поверочно-конструкторских расчётов пароперегревателя целесообразно определить тепловосприятия этих поверхностей по уравнениям теплового баланса и свести тепловой баланс по паровому котлу в целом.
Тепловосприятия пароперегревателя и воздухоподогревателя определяют по уравнениям теплового баланса рабочего тела (пара, воздуха), а тепловосприятие экономайзера – по уравнению теплового баланса теплоносителя (продуктов сгорания).
Тепловосприятие пароперегревателя определяют по формуле:
Находим при Pпе=40 кгс/см2 и tпе=440oC iпе=789,8 ккал/кг; при Pб=45 кгс/см2 и температуре насыщения iн=668,1 ккал/кг; iпо=15 ккал/кг;
Тепло, воспринимаемое пароперегревателем за счёт излучения факела топки, принимаем для упрощения расчётов равным нулю(Qпел =0), а угловой коэффициент фестона Хф=1. В этом случае полное тепловосприятие пароперегревателя численно совпадает с тепловосприятием конвекцией: Qпек = Qпе.
Полученное значение энтальпии газов за пароперегревателем позволяет определить температуру дымовых газов за ним пе=601,520С;
Тепловосприятие воздухоподогревателя определяют по уравнению теплового баланса рабочего тела (воздуха), т.к. температура горячего воздуха (после воздухоподогревателя) задана. Тепловосприятие воздухоподогревателя зависит от схемы подогрева воздуха. Т.к. предварительный подогрев воздуха, и рециркуляция горячего воздуха отсутствуют, то тепловосприятие воздухоподогревателя определяем:
где Iогв находим по tгв=220oC Iогв=745,2 ккал/кг;
вп – отношение объёма воздуха за воздухоподогревателем к теоретически необходимому:
Тепловосприятие воздухоподогревателя по теплоносителю (продуктам сгорания) имеет вид:
где Iух – энтальпия уходящих газов, которую находим по tух=150oC Iух=709,135 ккал/кг;
Iоух – энтальпия теоретического объёма воздуха, которую при













