125652 (690623), страница 2
Текст из файла (страница 2)
При измерениях могут появляться также очень большие грубые погрешности (промахи), которые возникают, как правило, из-за ошибок или неправильных действий оператора, а также из-за кратковременных отказов или сбоев в работе измерительных приборов и других резких изменений условий проведения измерений. Грубые погрешности обнаруживают и отбрасывают непосредственно в процессе измерений или при математической обработке результатов измерений с использованием специальных критериев.
Наиболее характерными из них являются: неправильный отсчет по шкале измерительного устройства, неправильная запись результата наблюдения (описка), неправильная запись значений отдельных мер использованного набора и т. п., ошибки при действиях с приборами, если они повторяются при измерениях.
Причинами грубых погрешностей могут быть внезапные или кратковременные изменения условий измерения или незамеченные неисправности в аппаратуре.
Оценка наличия грубых погрешностей решается методами математической статистики — статистической проверкой гипотез. Суть метода сводится к следующему. Выдвигается нулевая гипотеза относительно результата измерения, который вызывает некоторое сомнение и рассматривается как грубый промах в связи с большим отклонением от других результатов измерения. При этом нулевая гипотеза заключается в утверждении, что «сомнительный» результат в действительности принадлежит к возможной совокупности полученных в данных условиях результатов измерений, и получение такого результата вероятно.
Пользуясь определенными статистическими критериями, пытаются опровергнуть нулевую гипотезу, т. е. пытаются доказать ее практическую невероятность. Если это удается, то промах исключают, если нет — то результат измерения оставляют.
Выбор того или иного критерия основан на принципе практической уверенности. Для этого задаются достаточно малой вероятностью q того, что сомнительный результат действительно мог бы иметь место. Вероятность q называется уровнем значимости и обычно выбирается из ряда: 0,1; 0,05; 0,01 и т. д.
Для данного q определяют критическую область значений критерия проверки нулевой гипотезы. Если значение критерия попадает в эту область, то гипотеза отвергается.
Известен ряд критериев, которые позволяют исключить грубые промахи. К ним, в частности, можно отнести критерий Греббса (Смирнова), Шарлье, Шовене, Диксона и др. Эти критерии основаны на статических оценках параметров распределения, так как в большинстве случаев действительные значения параметров распределения неизвестны.
4. Измерения и их погрешности в строительстве
Одним из самых массовых видов измерений в строительной отрасли являются линейно-угловые измерения. Они выполняются в ходе операционного контроля параметров большинства строительных процессов, а также при приёмочном контроле и обеспечивают изготовление изделий и возведение сооружений с заданными размерами. Соблюдение заданных допусков на геометрические параметры зависит от точности производимых измерений.
Точность линейных измерений является также основой для возможности точных измерений других величин (силы, давления, твёрдости и др.).
В строительстве не находит применения Единая система допусков и посадок, разработанная для станкоинструментальной и машиностроительной отраслей, и практически не используются оптико-механические и электрические приборы высокой точности, применяемые в указанных отраслях.
Необходимость измерения малых (до 1 мм) линейных размеров и перемещений возникает при испытаниях строительных материалов и конструкций (измерение деформаций). Для этих целей широко используют зубчатые измерительные головки с ценой деления шкалы 0,01 или 0,001 мм, которые устанавливают непосредственно на испытываемый образец.
Используют также механические рычажные тензометры или проволочные тензорезисторы, наклеиваемые на поверхность образца или конструкции. Для измерения ширины трещин применяют простейшие измерительные микроскопы или измерительные лупы.
Применяемые для измерения деформаций средства имеют, как правило, некоторый запас по точности, т. е. предельная погрешность измерения в несколько раз меньше допустимой, и выбор измерительного средства не вызывает затруднений и полностью определяется конкретными условиями выполнения измерений.
Линейно-угловые измерения, выполняемые непосредственно на строительной площадке при контроле геометрических параметров в процессе возведения зданий и сооружений, проводятся в диапазоне от 1 мм до нескольких десятков метров. К измерительным средствам предъявляются требования по надёжности, простоте, быстродействию, устойчивости к внешним воздействиям и др. Допустимая относительная погрешность измерения находится в диапазоне 0,01…20 %. Допуски на установку некоторых элементов строительных конструкций не только назначаются исходя из функциональных требований, но часто определяются точностью применяемых измерительных средств и совершенством используемых выверочных приспособлений. Поэтому выбор измерительных средств для строительной площадки является ответственной задачей.
Наиболее широко используют штриховые меры длины (линейки, рулетки, складные метры), угольники, пузырьковые уровни, а также оптические и электронные геодезические приборы. Штангенинструмент и микрометры используют реже.
Измерительные металлические линейки имеют длину 150, 300, 500 и 1000 мм. Цена деления шкалы, как правило, составляет 1 мм. Отклонения общей длины линеек и расстояний от любого штриха до начала и конца шкалы их номинального значения не должны превышать 0,1 мм на длине до 300 мм; 0,15 мм на длине 300…500 мм; 0,2 мм на длине 500…1000 мм.
Измерительные металлические рулетки типов РС и РЖ имеют длину 1, 2, 3 м; типа РЗ – 2, 5, 10, 20, 30, 50, 75, 100 м. В зависимости от типа, класса точности (1, 2 и 3) и длины рулеток установлены допускаемые отклонения их действительной длины: 0,4…7 мм на всю длину рулетки; 0,2..0,4 мм – на метровые и дециметровые подразделения; 0,1…0,3 мм – на сантиметровое подразделение; 0,05…0,2 мм – на миллиметровое подразделение. При измерении рулетками суммарная погрешность измерений складывается из погрешности градуировки шкалы, погрешности отсчёта, температурной погрешности, а также погрешностей, вызванных непараллельностью шкалы рулетки и оси изделия, провисания рулетки или удлинения её вследствие натяжения.
Поверка штриховых мер длины осуществляется сличением их с эталонной штриховой мерой. Для сличения используют компараторы, оборудованные двумя микроскопами с окулярными микрометрами. С их помощью оценивают относительное положение штрихов на случайных мерах.
В метрологической практике применяют эталонные штриховые меры длиной один метр 1-го и 2-го разрядов, эталонные измерительные рулетки 1-го и 2-го разрядов, шкалы 1-го и 2-го разрядов. Допускаемая погрешность шкалы однометровой штриховой меры 1-го разряда составляет 0,05 мм, допускаемые погрешности шкал первого разряда – 0,2…0,5 мм, в зависимости от длины шкалы. Рабочие рулетки и рулетки 2-го разряда поверяют, как правило, по рулеткам 1-го разряда с обязательным натяжением ленты рулетки силой 50 Н.
К штангенинструментам относятся штангенциркули, штангенглубиномеры, штангенрейсмасы и др. Все эти инструменты предназначены для абсолютных измерений линейных размеров и разметки деталей. Принцип их действия основан на применении двух шкал – основной и дополнительной. Основная шкала служит для сравнения измеряемого размера, дополнительная шкала, называемая нониусом, - для повышения точности отсчёта долей деления основной шкалы.
В основу отсчёта по нониусу положена способность человеческого глаза оценивать совпадение или несовпадение штрихов двух сомкнутых шкал более точно, чем при определении на глаз долей деления основной шкалы.
Штангенинструменты изготавливают с отсчётом по нониусу 0,1; 0,05 и реже – 0,02 мм. Основные шкалы имеют интервал деления 1,0 или 0,5 мм.
Суммарная погрешность штангенциркуля в значительной степени определяется составляющей, вызванной перекосом подвижной губки за счёт имеющегося зазора в направляющих штанги. Эта составляющая увеличивается с увеличением длины губок. Существенную составляющую также даёт явление параллакса (кажущееся смещение указателя относительно штрихов шкалы при наблюдении в направлении, не перпендикулярном плоскости шкалы), а также наличие просвета между измерительными поверхностями губок.
Допускаемая погрешность штангенциркулей составляет 1 деление по нониусу.
Поверка штангенинструмента осуществляется с помощью эталонных плоскопараллельных концевых мер длины 4-го и 5-го разрядов.
ГОСТ 26433.1-89 содержит перечень средств линейно-угловых измерений, наиболее широко применяемых в строительстве, и схемы прямых и косвенных измерений большинства геометрических параметров. Приведены также предельные погрешности измерения линейных и угловых размеров, параметров формы и взаимного положения поверхностей при использовании различных измерительных инструментов. В ГОСТ 26433.2-94 приведены также предельные погрешности измерения отклонений от разбивочных осей, вертикали, проектных отметок и заданного уклона при использовании геодезических приборов. Приведённые данные должны использоваться при выборе измерительных средств по величине предельной погрешности.
Правила выбора определены в ГОСТ 23616-79 и ГОСТ 26433,0-85. В соответствии с указанными документами при установке элементов зданий и контроле допусков на геометрические параметры должно выполнятся условие
где
- допуск на контрольный размер.
При производстве разбивочных работ допускается увеличение предельной погрешности:
Заметим, что первое условие, установленное ранее для геодезических измерений, не всегда необходимо и не всегда выполняется на строительной площадке. Например, при контроле линейных размеров металлическими рулетками, а также при контроле вертикальности и проектных отметок с помощью специальных устройств с пузырьковыми уровнями предельная погрешность иногда составляет 50 % и более от заданного допуска. При этом применение более точных измерительных средств экономически нецелесообразно. Очевидно, требования к размеру предельной погрешности должны быть дифференцированы в зависимости от вида допуска (технологический или функциональный) и возможности исправления или компенсации полученного отклонения.
Размеры основных допусков на геометрические параметры строительных конструкций приведены в СНиП 3.03.01-87 «Несущие и ограждающие конструкции». Очевидно, для всех приведённых допусков должны быть рекомендованы методы и средства измерений с учётом условий выполнения измерений и допустимой предельной погрешности измерений.
В настоящее время в связи с внедрением в строительное производство новых электронных геодезических приборов высокой точности появляется возможность пересмотреть ряд допусков. Это в первую очередь относится разбивочным работам, где допуски на линейные размеры определялись исходя из точности измерения металлическими рулетками.
5. Тестовые вопросы
1. В зависимости от условий и режимов измерения различают погрешности:
-
инструментальные, методические и субъективные
-
статические и динамические
-
основные и дополнительные
-
Относительная погрешность
определяется по формуле: -
3. Какая погрешность обусловлена недостаточной квалификацией или индивидуальными особенностями оператора, выполняющего измерения?
a) инструментальная
b) методическая
c) субъективная
4. Что такое погрешность измерения?
a) сумма полученного при измерении и истинного значений величины
b) разностью между полученным при измерении и истинным значением величины
c) истинное значение измеряемой величины
5. Для удобства исследования и оценки погрешностей суммарную погрешность делят на две составляющие:
a) статическую и динамическую
b) случайную и систематическую
c) основную и дополнительную
Список литературы
1. А.А. Гончаров, В.Д. копылов. Метрология, стандартизация и сертификация. М.: Издательский центр «Академия», 2004.
2. Г.Д. Бурдун, Б.Н. Марков. Основы метрологии. М.: Издательство стандартов, 1985.
3. С.А. Зайцев. Нормирование точности: Учеб. пособие для сред. проф. образования. М.: Издательский центр «Академия», 2004.
4. М.А. Земельман. Метрологические основы технических измерений. М.: Издательство стандартов, 1991.
5. А.Г. Схиртладзе. Практикум по нормированию точности: Учеб. пособие для вузов. М.: Славянская школа, 2003.
Ответы на тест: 1- b; 2-b; 3- b; 4-b; 5- b.
определяется по формуле:















