125588 (690599), страница 9
Текст из файла (страница 9)
Для ламп с большой продолжительностью горения (1000 ч и более) допустимо проводить испытания на продолжительность горения при повышенном напряжении. При этом исходят из того, что пользуются известным соотношением, согласно которому повышение напряжения на 1 % (против номинального) снижает продолжительность горения на 13—14%. Отметим, однако, что эти значения для галогенных ламп могут рассматриваться лишь как первое приближение и для каждого типа ламп в зависимости от ее конструкции и параметров следует (принято) пользоваться уточненными выражениями. Необходимо иметь в виду, что испытания на продолжительность горения при повышенном напряжении не всегда позволяют получать истинную картину работоспособности ламп.
Испытания на продолжительность горения и надежность относятся к так называемым периодическим испытаниям. Такие испытания трудоемки и длительны и проводятся 1 раз в год, в квартал или в какой-либо иной промежуток времени, указанный в стандартах и технических условиях.
Применительно к источникам света под отказом обычно понимают спад светового потока ниже допустимого предельного значения, нарушение целостности ламп (например, отвал цоколя) и перегорание или разрушение тела накала. Первые два фактора для галогенных ламп не являются критическими, ибо галогенный цикл обеспечивает практически стабильный световой поток на протяжении срока службы ламп. Нарушение же целостности конструкции ламп — явление довольно редкое. Основные причины выхода ламп из строя связаны с целостностью и формоустойчивостью тела накала — наиболее чувствительного элемента конструкции ламп ко всем перегрузкам. Узким местом галогенных ламп является место впая.
Основной задачей изготовителей ламп является строгое соблюдение установленных технологических режимов и конструктивных требований к лампам. Только в таких условиях могут быть гарантированы высокое качество галогенных ламп и полное соответствие их параметров установленным нормам.
3. Расчетная часть
3.1 Расчет галогенной смеси
В отечественных лампах используют бромистый метил и бромистый метилен
.
Смесь рассчитывают с использованием уравнения состояния газов, которое при определенных допустимых приближениях пригодно для определения параметров паров галогенных соединений:
, (1)
где Q – общее количество галогенного соединения в единицах pV,
р – давление (парциальное) галогенной смеси, Па;
V – объем лампы, см ;
m – общая масса паров, г;
М - молекулярная масса галогенного соединения, моль;
n – количество галогенного соединения, моль;
R – универсальная газовая постоянная, 8,3143*10 Дж/(кмоль*К);
Т – абсолютная температура, К.
Количество галогенного соединения рассчитывается по формуле (2):
,
где - давление галогена,
- объем лампы.
Молярная концентрация:
, (3)
Общая масса паров галогенного соединения:
, (4)
Массовая концентрация в лампе:
, (5)
Составим пропорцию:
;
, (6)
где - давление галогена в лампе,
- давление инертного газа,
- давление галогена в баллоне,
- давление смеси.
Количество галогенного соединения, поданного в баллон, рассчитывается по формуле (7):
, (7)
где - объем смеси.
Масса галогенного соединения, вводимая в баллон:
, (8)
Массовая концентрация галогенного соединения в баллоне равна:
, (9)
Данные, необходимые для расчета галогенной смеси для лампы КГ 220-500 представлены в таблицах 3.1 и 3.2.
Таблица 3.1 – Расчетные значения рабочего давления газов в лампе.
Лампа | Давление газа при 293 К, 105Па | Истинная температура тела накала, К | Температура внешн стенки оболочки, К | Рабочее давление в лампе, 105 Па |
КГ 220-500 | 3,3 | 3200 | 900 | 10,0 |
Таблица 3.2 – Расчетный состав галогенной смеси
Лампа | Удельная электрическая нагрузка, Вт/см2 | Kr,% | Xe,% | N2,% | Давление при 293 К, смеси, 105Па | CH2Br2 | CH3Br | Давление галогенного соединения, 102 Па |
КГ 220-500 | 30 | 80 | - | 20 | 3,3 | - | + | 6,7 |
Произведем расчет галогенной смеси:
,
,
,
,
,
,
,
,
,
,
,
,
Заключение
В этом курсовом проекте были рассмотрены конструкция и технологический процесс изготовления кварцевой галогенной малогабаритной лампы типа КГ 220-500. Курсовой проект содержит три части: конструкция, технологическая часть и расчетная часть.
В первой части курсового проекта представлено описание устройства лампы, а также рассмотрены принципиальные особенности работы галогенных ламп накаливания с использованием галогенного цикла.
Во второй части поэтапно разбирался технологический процесс изготовления кварцевой галогенной лампы, включающий изготовление стеклянных деталей, изготовления электродов, цоколей и другие, а также были рассмотрены этапы испытания ламп.
В третьей части были произведены расчеты галогенной смеси с использованием уравнения состояния газов. Нужно всегда иметь в виду, что если количество галогенных соединений и состав смеси выбраны правильно для ламп данной конструкции, стенки оболочки остаются практически чистыми в процессе эксплуатации.
В настоящее время лампы накаливания получили широкое распространение. Они используются для осветительных установок жилых зданий, применяются для местного освещения и освещения взрывоопасных помещений.
Появление кварцевых галогенных ламп накаливания явилось большим прогрессом в области тепловых источников света. Они являются высокоинтенсивными источниками излучения (с малыми габаритными размерами), благодаря чему нашли широкое применение во многих областях науки, техники и быта. Имеется много примеров того, как использование кварцевых галогенных ламп накаливания позволило найти принципиально новые технические решения многих интересных задач, которые ранее либо вовсе были невозможны, либо не давали должного эффекта.
В настоящее время начали широко применяться газоразрядные лампы, во многих областях применения лампы накаливания заменяются люминесцентными лампами. Тем не менее, лампы накаливания являются наиболее распространенными в виду того, что они отличаются простотой конструкции, простотой в обращении, непрерывным спектром света, могут работать при любых внешних условиях и не требуют для включения специальных пускорегулирующих аппаратов.
Список использованных источников
-
Абрямян А.А., Восканян С.А. Дозировка брома в лампы накаливания – Светотехника, 1976, №6, С. 23.
-
Вугман С. М., Волков В. И. Галогенные лампы накаливания. - М.: Энергия, 1980. – 136с.
-
Денисов В. П. Производство электрических источников света. – М.: Энергия, 1975. – 488с.
-
Любимов М.Л. Спаи металла со стеклом. – М.: Энергия, 1968. – 280с.
-
Ульмишек Л. Г. Производство электрических ламп накаливания. -М.: Энергия, 1966. – 636с.