125162 (690321), страница 3
Текст из файла (страница 3)
или
• 2514 — теплота парообразования при температуре 0 °C и атмосферном давлении, кДж/кг;
• HP и WP — содержание водорода и водяных паров в рабочем топливе, %;
• 9 — коэффициент, показывающий, что при сгорании 1 кг водорода в соединении с кислородом образуется 9 кг воды.
Соотношение между теплотой сгорания высшей и низшей в кДж/кг
Для удобства расчетов и сравнения теплоты сгорания различных видов топлива пользуются понятием условное топливо. Теплота сгорания условного топлива составляет 29,3 МДж/кг (7000 ккал/кг).
Для пересчета расходов натурального топлива на условное служит тепловой эквивалент топлива
,
где Ву и Вр — расходы соответственно условного и рабочего (натурального) топлива; Э — тепловой эквивалент топлива,
,
Или
Газообразное топливо представляет собой смесь различных газов. Природные газы содержат от 80 до 98% метана. Попутные газы, выходящие на поверхность из нефтяных скважин одновременно с добываемой нефтью, состоят из метана (40—60%) и тяжелых углеводородов (этана, пропана, бутана). Теплота сгорания природного газа
, попутного
.
Из искусственных газов наибольшее распространение получили генераторный газ
, коксовой с
и доменный с
.
2.3 Двухтактные двигатели
ДВС, в которых рабочий цикл совершается за два хода поршня (один оборот коленчатого вала), называется двухтактными.
В двухтактном двигателе отсутствуют клапаны. Впуск горючей смеси и выпуск отработавших газов двигателей происходят через окна в цилиндре, которые своевременно открываются и закрываются движущимся поршнем.
Первый такт. При движении вверх поршень 2 (рис. 3.а) перекрывает выпускные окна 3 в цилиндре, в результате чего рабочая смесь над поршнем сжимается. Одновременно под поршнем создается разряжение, и из карбюратора 4 через выпускные окна 5 цилиндра горючая смесь засасывается в кривошипную камеру 6.
При подходе поршня к верхней мертвой точке (в.м.т.) в искровой свече зажигания 1 (рис. 3.б) образуется электрическая искра и рабочая смесь в цилиндре воспламеняется. На этом заканчивается первый такт.
Второй такт. Под давлением образовавшихся от сгорания рабочей смеси газов поршень перемещается вниз, совершая рабочий ход, который происходит до тех пор, пока не откроются выпускные клапана и начнется выпуск отработавших газов через выпускную трубу наружу. При движении поршня вниз горючая смесь в кривошипной камере сжимается. В конце второго такта поршень открывает окна продувочного канала 7 и горючая смесь нагнетается из кривошипной камеры в цилиндр, вытесняя из него отработавшие газы (рис. 3.в). происходят продувка и одновременно наполнение цилиндра свежей горючей смесью. При этом горючая смесь частично выходит вместе с отработавшими газами.
Рис.3. Схема работы двухтактного двигателя: а - первый такт; б – конец первого и начало второго такта; в – конец второго такта; 1 – искровая свеча зажигания; 2 – поршень; 3 и 5 – выпускное и впускное окна цилиндра; 4 – карбюратор; 6 – кривошипная камера; 7 – продувочный канал; 8 – цилиндр; 9 – выпускная труба; 10 – картер.
Таким образом, за два хода поршня (два такта) совершается полный рабочий цикл. Однако двухтактные двигатели менее экономичны, чем четырехтактные. При продувке через выпускные окна теряется 30% горючей смеси. Поэтому на тракторах их используют при кратковременной работе для пуска двигателя.
3. ПАРАМЕТРЫ, ХАРАКТЕРИЗУЮЩИЕ ПОРШНЕВЫЕ ДВИГАТЕЛИ
3.1 Среднее индикаторное давление и индикаторная мощность
Индикаторная мощность двигателя, полезная работа, совершаемая газами в цилиндре поршневого двигателя в единицу времени; определяется путём обработки индикаторных диаграмм, полученных при испытании двигателя. Индикаторная мощность данного двигателя различна на разных режимах его работы. Зависимость Индикаторная мощность от частоты вращения называется скоростной характеристикой. Чтобы построить скоростную характеристику Индикаторная мощность, снимают индикаторные диаграммы на различных частотах вращения. Путём планиметрирования площадей полученных диаграмм определяют Индикаторная мощность на данной частоте вращения. Индикаторная мощность частично расходуется на преодоление сил трения внутри двигателя и на приведение в действие вспомогательных механизмов. Индикаторная мощность может быть определена как сумма мощности, получаемой на коленчатом валу (эффективная мощность), и мощности, расходуемой на потери (мощность трения).
Под средним индикаторным давлением
понимают такое условное постоянное давление, которое, действуя на поршень в течение одного рабочего хода, совершает работу, равную индикаторной работе газов в цилиндре за рабочий цикл.
Согласно определению среднее индикаторное давление находится как отношение индикаторной работы газов за цикл
к единице рабочего объема цилиндра
, т.е.
.
При наличии индикаторной диаграммы, снятой в двигателе (рис. 4), среднее индикаторное давление можно определить по высоте прямоугольника, построенного на основании
, площадь которого равна полезной площади индикаторной диаграммы, представляющей собой в некотором масштабе индикаторную работу
.
Определив с помощью планиметра полезную площадь
индикаторной диаграммы в
и длину
индикаторной диаграммы в
, соответствующую рабочему объему цилиндра, находят значение среднего индикаторного давления
Рис. 4. индикаторная диаграмма четырехтактного двигателя
,
где
- масштаб давления индикаторной диаграммы,
.
Среднее индикаторное давление при полной нагрузке у четырехтактных карбюраторных двигателей
, у четырехтактных дизелей
, а у двухтактных дизелей -
.
Индикаторная работа, совершаемая газами в одном цилиндре за один цикл
,
.
где pi - среднее индикаторное давление газов, н/м2;
V – объем поршня, м2.
Так как число рабочих циклов, совершаемых двигателем в секунду, равно 2
, то индикаторная мощность
одного цилиндра
,
где
- число оборотов коленчатого вала в секунду;
- тактность двигателя – число тактов за цикл.
Индикаторная мощность многоцилиндрового двигателя при числе цилиндров
:
.
3.2 Коэффициенты полезного действия
Экономичность действительного рабочего цикла двигателя определяется индикаторным к.п.д.
и удельным индикаторным расходом топлива
. Экономичность работы двигателя в целом оценивается эффективным к.п.д.
и удельным расходом топлива
.
Индикаторный к.п.д.
оценивает степень использования теплоты в действительном цикле с учетом всех тепловых потерь и представляет собой отношение теплоты
, эквивалентной полезной индикаторной работе, ко всей затраченной теплоте
, т.е.
.
Теплота, затраченная на работу двигателя в течение 1
:
,
где
- расход топлива,
;
- низшая теплота сгорания топлива,
.
Подставляя значения
и
в равенство (а), получим
.
Эффективный к.п.д.
оценивает степень использования теплоты топлива с учетом всех видов потерь как тепловых, так и механических и представляет собой отношение теплоты
, эквивалентной полезной эффективной работе, ко всей затраченной теплоте
,т.е.
.
Удельный эффективный расход топлива
представляет собой отношение секундного расхода топлива
к эффективной мощности
, т.е.
или
.
Коэффициент полезного действия (КПД) теплового двигателя может быть определён как отношение полезной механической работы к затрачиваемому количеству теплоты, содержащейся в топливе. Остальная часть энергии выделяется в окружающую среду в виде тепла. КПД тепловой машины равен
,
Где Wтм — механическая работа, Дж;
Qз — затраченное количество теплоты, Дж.
Тепловой двигатель не может иметь КПД больший, чем у цикла Карно, в котором количество теплоты передается от нагревателя с высокой температурой к холодильнику с низкой температурой. КПД идеальной тепловой машины Карно зависит исключительно от разности температур, причём в расчётах используется абсолютная термодинамическая температура. Следовательно, для паровых двигателей необходимы максимально высокая температура T1 в начале цикла (достигаемая, например, с помощью пароперегрева) и как можно более низкая температура T2 в конце цикла (например, с помощью конденсатора):
Так как механический к.п.д. равен отношению
к
, то получим















