124616 (690094), страница 2
Текст из файла (страница 2)
Одним из важных условий прочного сцепления покрытия с основой является достаточная шероховатость покрываемой поверхности, которая достигается пескоструйной или дробеструйной очисткой и травлением. Прочность сцепления также значительно возрастает при предварительном нагревании покрываемой поверхности. Этим методом можно цинковать крупные сооружения различной формы (стальные конструкции, мосты, шлюзовые ворота, баки, цистерны, радиомачты и т.п.) и неметаллические изделия, а также производить ремонтное или частичное покрытие без разборки сооружения. Мелкие детали цинкуют во вращающихся барабанах, соединенных с аппаратом для распыления. К достоинствам метода следует отнести также возможность регулирования толщины слоя цинка и большую скорость нанесения покрытия.
Недостатками метода распыления являются малая плотность, пористость и повышенная хрупкость покрытия. Кроме того, расход цинка значительно превышает количество металла, наносимого на поверхность изделий, вследствие его потерь при распылении, достигающих 35% и более.
Для повышения плотности и улучшения антикоррозионных свойств покрытия, получаемого методом распыления, применяют иногда последующую механическую (шлифование) или химическую обработку. Последняя основана на заполнении пор инертными веществами при пропитке ими слоя или продуктами коррозии цинка, образующимися внутри пор в покрытии. Уплотнение слоя достигается также образованием карбонатов и гидроокиси цинка при погружении оцинкованных изделий в горячую воду.
Метод цинкования без внешнего источника тока, так называемый контактный способ, состоит в том, что очищенные от загрязнений изделия погружают в раствор цинковой соли и приводят их в соприкосновение с металлом, имеющим потенциал более отрицательный, чем потенциал покрываемого металла. При этом металл переходит в раствор, вытесняя цинк на поверхность покрываемого изделия.
Для цинкования стали в качестве контактного металла применяют обычно алюминий и ведут процесс в щелочном горячем растворе цинковой соли в течение нескольких часов. Этим способом можно получать покрытия 'небольшой толщины, поэтому контактный способ применяется лишь для покрытия мелких, несоответственных изделий (гвозди и др.), которые загружают в раствор в алюминиевых (контактный металл) сетчатых корзинах. Примерный состав раствора 10 г/л ZnSO4-7H2O, 3 г/л K. CN и 15 г/л NaOH; температура раствора 80-90 °С.
Электролитический способ - наиболее рациональный и совершенный способ цинкования, получивший широкое распространение в промышленности для защиты стальных изделий от коррозии. Электролитическое осаждение цинка из водных растворов его солей, несмотря на высокий потенциал этого металла (-0,70 В), достигается благодаря тому, что водород имеет на цинке большое перенапряжение и при определенных условиях электролиза почти не выделяется на катоде.
При электролитическом цинковании стали сплав между железом основы и цинком не образуется. Поэтому цинковое покрытие не содержит примеси основного металла. Загрязнения его другими металлами (железом, свинцом) весьма незначительны, их количество не превышает сотых долей процента. Степень чистоты электролитического цинкового покрытия тем выше, чем чище исходные материалы, применяемые для электролиза, и прежде всего материал анодов.
Полученное при нормальных условиях электролитическое цинковое покрытие отличается значительно меньшей хрупкостью, чем покрытия цинком, наносимые другими способами; оно обладает большей пластичностью и хорошей сцепляемостью с основным металлом.
Электролитический способ позволяет точно регулировать количество наносимого на поверхность цинка и получать на изделиях несложной конфигурации достаточно равномерные покрытия. В связи с этим расход цинка на покрытие значительно меньше, чем при других способах. Потери цинка, неизбежные при горячем способе, в данном случае незначительны. Экономия металла при электролитическом способе по сравнению с горячим составляет 50% и более.
Толщина цинкового покрытия, необходимая для защиты изделий от коррозии, зависит от материала и характера обработки покрываемых изделий, назначения, условий службы и хранения изделий и колеблется в довольно широких пределах от 0,005 до 0,05 мм.
1.3 Сравнительная характеристика цинковых электролитов
Электролиты для цинкования можно разделить на две основные группы: простые кислые (сернокислые, хлористые, борфтористо-водородные), в которых цинк находится в виде гидратированных ионов, и сложные комплексные, в которых цинк присутствует в виде комплексных ионов, заряженных отрицательно (анионы) или положительно (катионы) '. Из комплексных электролитов известны щелочно-цианистые, щелочныенецианистые (цинкатные), пирофосфатные, аммиакатные, аминокомплексные с различными органическими адендами и др.
От природы и состава электролитов зависят качество осадков на катоде и скорость процесса осаждения. Так как качество осадков и скорость процесса в значительной степени определяются характером и степенью изменения катодных потенциалов. Чем резче выражена катодная поляризация, тем более мелкозернистые и равномерные по толщине осадки на катоде.
В кислых электролитах без специальных добавок катодная поляризация сравнительно невелика во всем рабочем интервале плотностей тока и выход металла по току возрастает. Осадки на катоде, образующиеся из таких электролитов, удовлетворительны по структуре, но менее равномерные по толщине слоя, чем, например, из цианистых и других комплексных электролитов. Однако допустимая плотность тока и, следовательно, скорость процесса, в кислых электролитах может быть значительно выше, чем в комплексных. Наиболее эффективными являются борфтористоводородные электролиты, так как они обладают высокими буферными свойствами, по-видимому, вследствие образования более сильной кислоты - гидрата трехфтористого бора HBF3OH при гидролизе HBF4.
Кислые электролиты применяются главным образом для цинкования изделий простой формы (листы, лента, проволока, стержни, пластины и т.п.). Электролиты, содержащие поверхностно-активные вещества,. повышающие катодную поляризацию, могут использоваться для цинкования также и рельефных деталей.
В щелочно-цианистых электролитах цинк находится в виде комплексных анионов.
Выделение цинка катоде из таких растворов происходит при высокой катодной поляризации, особенно при большом содержании свободного цианида. Поэтому осадки из цианистых электролитов получаются очень мелкозернистыми и более равномерными по толщине, чем из растворов простых солей цинка в отсутствие специальных добавок.
В цианистых электролитах выход металла по току ниже, чем в кислых растворах, и снижается при повышении плотности тока (особенно резко при большом содержании свободного цианида). Последнее в значительной мере способствует улучшению равномерности распределения металла на катоде.
Допустимая плотность тока в щелочно-цианистых электролитах, как правило, ниже, чем в кислых. Перемешивание сжатым воздухом, позволяющее в кислых электролитах значительно увелличить плотность тока, в цианистых растворах недопустимо вследствие карбонизации свободного цианида и выделения в атмосферу токсичного цианистого водорода
Этот процесс, хотя и менее интенсивно, протекает также в отсутствие перемешивания вследствие взаимодействия электролита с окружающей атмосферой, поэтому ванны с цианистыми растворами должны быть оборудованы специальными (бортовыми) вентиляционными отсосами. За счет карбонизации состав цианистых электролитов менее устойчив по сравнению с кислыми и требует частого корректирования - добавления цианида.
Анодная поляризация в цианистых цинковых электролитах несколько выше, чем в кислых. При электролизе с высокой анодной плотностью тока (выше допустимого предела) наступает пассивирование анодов и потенциал анодов резко смещается в сторону положительных значений. Это обусловливает выделение на аноде кислорода и снижение анодного выхода металла по току. Особенно сильно проявляется пассивирование анодов при недостатке в электролите свободного лиганда (цианида и щелочи): чем ниже концентрация лиганда, тем при меньшей плотности тока наступает пассивирование анодов.
Щелочно-цианистые электролиты широко применяют в промышленности для покрытия изделий различной формы - простых и сложных по конфигурации. Серьезным недостатком обычных цианистых электролитов цинкования (без специальных добавок) является значительное наводороживание в них стальных деталей, что приводит к резкому ухудшению механических свойств деталей после покрытия: уменьшается пластичность, увеличивается склонность стали к хрупкому разрушению.
Щелочные нецианистые - цинкатные электролиты в отличие от цианистых нетоксичны и более устойчивы по составу, чем щелочно-цианистые. Они содержат цинк в основном в виде комплексов типа Zn (OH) 24 и щелочь. Катодная поляризация в цинкатных электролитах без специальных добавок ПАВ выражается сравнительно небольшой величиной, она имеет в основном диффузионный характер, химическая поляризация составляет небольшую долю и выражается величиной порядка нескольких милливольт (7-10 мВ).
Анодный процесс сильно зависит от концентрации основных компонентов и температуры. Характерной особенностью поведения цинкового анода в пирофосфатных электролитах является склонность к пассивированию. Анодная плотность тока, при которой наступает полное пассивирование, тем меньше, чем ниже концентрация Р2О7 своб. и температура. Критическая плотность тока, при которой наступает пассивирование, значительно снижается при уменьшении рН<8.
В аммиакатных электролитах цинк присутствует в виде аммиачного комплексного катиона Zn (NH3). Восстановление этих ионов протекает при более отрицательном потенциале, чем восстановление простых гидратированных ионов, но с повышением плотности тока катодный потенциал изменяется не так резко, как в цианистых и пирофосфатных электролитах - наклон поляризационных кривых менее значителен.
Допустимый верхний предел плотности тока так же, как и в цинкатных электролитах, сильно зависит от концентрации металла и в обычно применяемых разбавленных растворах не превышает 1,5-102 А/м2. Выход металла по току близок к теоретическому и мало изменяется при повышении плотности тока. Удовлетворительные по качеству осадки получаются из этих электролитов только в присутствии некоторых органических добавок.
Рассеивающая способность аммиакатных электролитов выше, чем простых кислых (без специальных добавок), но уступает рассеивающей способности цианистых. Аноды в аммиакатных электролитах растворяются в интервале рабочих плотностей тока (равных катодным) с высоким выходом по току.
В числе комплексных электролитов с органическими адендами в последнее время были разработаны этилендиаминовые, моноэтаноламиновые, триэтаноламиновые, полиэтиленполиаминовые, гликолевые, трилонатные и др.
1.4 Кислые электролиты
Удовлетворительные по внешнему виду осадки цинка можно получать из простых кислых электролитов, содержащих только соль цинка и небольшое количество серной кислоты. Однако на практике для улучшения качества' покрытия к раствору соли цинка обычно добавляют поверхностно-активные вещества, а также соли щелочных металлов и вещества, 'Сообщающие буферные свойства электролиту.
Из солей цинка применяется преимущественно сернокислый цинк, так как в присутствии большого количества хлористых солей происходит сильное разрушение цинковых анодов. Тем не менее электролиты на основе хлористого цинка с блескообразующими добавками в последнее время были предложены как более перспективные для получения блестящих цинковых покрытий. Борфтористоводородные электролиты применяются реже вследствие высокой стоимости и сложности их приготовления.
Катодная поляризация в сернокислых и борфтористоводородных электролитах цинкования выше, чем в хлористых.
Концентрация цинка выбирается в зависимости от требуемой скорости процесса. Чем больше концентрация цинка в растворе, тем выше допустимая плотность тока, но тем менее равномерны по толщине осадки цинка.
Для цинкования деталей на подвесках или в насыпном виде в колоколах и в барабанах обычно применяют растворы, содержащие от 1 до 2 гэкв/л ZnSO4.
Большое влияние на катодный процесс при электроосаждении цинка оказывает концентрация водородных ионов. В растворе, содержащем 0,9 моль/л ZnS04, поляризация возрастает с понижением рН, причем в перхлоратных и сернокислых растворах в большей степени, чем в хлористых. Показано также, что в зависимости от рН раствора без органических добавок меняется также и природа поляризации при электроосаждении цинка. В кислых растворах при рН - 2,5 преобладает химическая поляризация, при более высоких значениях рН (около 5,2) концентрационная поляризация превышает химическую. В соответствии с этим электролитические осадки цинка из чистого раствора ZnSO4 при низком значении рН имеют более мелкозернистую структуру, чем при повышенном рН.
Для поддержания рН около 4,5 в электролит вводят буферные добавки - уксусную, чаще борную кислоту (20-30 г/л). Вместо уксусной кислоты целесообразно вводить уксуснокислый натрий, который после прибавления серной кислоты дает эквивалентное количество слабодиссоциированной уксусной кислоты. Хорошими буферными свойствами обладает электролит, содержащий около 30 г/л сернокислого алюминия или алюмокалиевых квасцов. В присутствии солей алюминия при этом значении рН повышается также катодная поляризация и осадки цинка получаются светлыми, полублестящими мелкозернистой структуры. Буферные свойства сернокислого алюминия основаны я а том, что при рН = 4-4,5 он подвергается гидролизу с образованием H2S04
К сернокислому электролиту цинкования добавляют иногда соли других, не выделяющихся на катоде, металлов, например, сульфаты или хлориды натрия и аммония (до 2 г-экв/л и более), главным образом для увеличения электропроводности растворов. При добавлении сернокислых солей повышается также катодная поляризация, что способствует улучшению распределения металла по поверхности катода.
Присутствие ионов С1 снижает катодную поляризацию при электроосаждении цинка, что позволяет регулировать скорость процесса в тех случаях, когда она слишком мала за счет сильного ингибирующего действия некоторых органических добавок (закрепитель ДЦУ, ТИАС - тетраизоамиламмонийеульфат и др.). В присутствии таких ПАВ авторы рекомендуют применять смешанные сульфатхлоридные электролиты. Роль хлор-иона объясняется образованием промежуточного комплекс, облегчающего переход электронов на разряжающие частицы.
8>