123850 (689656), страница 2
Текст из файла (страница 2)
(20)
где - диаметр передней направляющей части, мм.
Диаметр последнего зуба режущей части протяжки
(21)
где - диаметр калибрующих зубьев протяжки, мм.
(22)
где - диаметр отверстия, получаемого после протягивания, мм;
- предельное отклонение диаметра D по чертежу, мм;
- величина разбивания отверстия.
Диаметры промежуточных зубьев режущей части протяжки между первым и последним получают последовательным прибавлением к диаметру первого зуба удвоенного значения толщины срезаемого слоя одним зубом 2а.
Диаметр 2-го зуба (23)
Диаметр 3-го зуба и т. д.
Предельные отклонения диаметра последнего режущего и калибрующих зубьев по ГОСТ 16492-70 равно –0,02 мм.
Определение толщины срезаемого слоя
Фасонные протяжки срезают припуск на заготовке, как правило, по генераторной схеме резания. Толщина срезаемого слоя равна разности высот и полу разности диаметров каждой пары сменных режущих зубьев. Ширина срезаемого слоя
равна длине главной режущей кромке зуба протяжки. Режущая кромка первого зуба окружность, следовательно:
(24)
Режущие кромки последующих зубьев - дуги концентрических окружностей, поэтому ширина срезаемого слоя одним зубом равна сумме длин дуговых участков главной режущей кромки данного зуба, т.е.:
(25)
где b – длина одного дугового участка на режущей кромке данного зуба;
n – число дуговых участков на режущей кромке зуба.
Длина дуговых участков режущей кромки уменьшается при увеличении диаметра от d до D,т.е. от первого зуба к последнему на режущей части протяжки. Сила резания при протягивании зависит от площади срезаемого слоя Р=f(ab), поэтому для сохранения постоянной силы P за весь период протягивания отверстия пропорционально уменьшению b увеличивают толщину срезаемого слоя а, т. е. стремятся получить постоянной величину площади срезаемого слоя.
Определяем толщину срезаемого слоя
Определим общий припуск на протягивание
(26)
Разделяем произвольно величину А на 4 ступени и устанавливаем диаметры ступеней.
d1=d=30 мм;
d2=32 мм;
d3=34 мм;
d4=35 мм;
D=39,3 мм.
Припуск первой ступени от d1 до d2 срезают зубья первой секции режущей части протяжки, припуск второй ступени от d2 до d3 срезают зубья секции номер два, припуск третьей ступени от d3 до d4 срезают зубья секции три, припуск четвёртой ступени от d4 до D срезают зубья секции 4.
Принимаем постоянной величину, а в пределах каждой ступени, но разной на отдельных ступенях: наименьшая - на первой, наибольшая - на последней ступени.
Определяем толщину срезаемого слоя на первой ступени из условия прочности протяжки по впадине первого зуба.
(27)
где - площадь сечения во впадине первого зуба протяжки,
;
(28)
- допускаемое напряжение деформации растяжения в материале режущей части протяжки, МПа. Для стали Р6М5
, твёрдость HRCэ 63…66;
- длина режущей кромки первого зуба протяжки, мм;
- число зубьев протяжки участвующих одновременно в резании;
(29)
t - Шаг зубьев на режущей части протяжки;
- коэффициенты, принимаемые по табл. 4,5 [2].
- обработка с эмульсией.
Принимаем 0,09 мм
Определяем толщину срезаемого слоя на второй и последующих ступенях из условия
….
(30)
где - суммарная ширина срезаемого слоя первым зубом каждой ступени.
(31)
где - длина дугового участка режущей кромки первого зуба каждой
ступени (секции), измеряемая на диаметре данной ступени;
- число дуговых участков.
Величину определяем путём математического определения угла
Рисунок 2.3 Схема построения математической модели для определения угла .
Найдём значение диаметров зубьев на каждом участке, воспользовавшись формулой (23). Полученные значения занесём в таблицы.
Таблица 2 Диаметры зубьев на участке 1.
Номер зуба | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Диаметр зуба | 30 | 30,18 | 30,36 | 30,54 | 30,72 | 30,9 | 31,08 |
Толщина среза | 0,09 | ||||||
Номер зуба | 8 | 9 | 10 | 11 | 12 | 13 | |
Диаметр зуба | 31,26 | 31,44 | 31,62 | 31,8 | 31,98 | 32,16 |
Таблица 3 Диаметры зубьев на участке 2.
Номер зуба | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Диаметр зуба | 32,44 | 32,72 | 33,00 | 33,28 | 33,56 | 33,84 | 34,12 |
Толщина среза | 0,14 |
Таблица 4 Диаметры зубьев на участке 3.
Номер зуба | 1 | 2 |
Диаметр зуба | 34,56 | 35,00 |
Толщина среза | 0,22 |
Таблица 5 Диаметры зубьев на участке 4.
Номер зуба | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
Диаметр зуба | 35,56 | 36,12 | 36,68 | 37,24 | 37,8 | 38,36 | 38,92 | 39,03 | |
Толщина среза | 0,28 | 0,055 |
Проверяем возможность размещения стружки в канавке между зубьями при срезании протяжкой максимальной толщины срезаемого слоя.
(31)
где - коэффициент заполнения стружечной канавки, по табл. 6 [2]
- условие не выполняется.
Принимаем удлинённую форму стружечной канавки и определяем её размеры с учётом размещения в ней стружки на один рабочий ход зуба. Расчёт ведём в сечении перпендикулярном к режущей кромке.
(32)
где - активная площадь удлинённой стружечной канавки,
- Площадь срезаемого слоя,
(33)
(34)
(35)
Принимаем 12,5 мм
Проверка прочности протяжки на разрыв по шейке хвостовика
(36)
где Р - сила резания при протягивании, Н
(37)
(38)
где - диаметр шейки хвостовика, мм;
- допускаемое напряжение при деформации растяжения в материале
хвостовика, МПа. Для стали 40 ГОСТ4543-71
Так как условие не выполняется, то в качестве материала хвостовика принимаем сталь Р6М5 ГОСТ 19265-73 , HRCэ 63…66.
- условие выполняется
Проверка протяжки по тяговой силе протяжного станка
(39)
где Q - номинальная тяговая сила протяжного станка. Выбираем по табл 7 [2]
Выбираем модель станка 7Б56 с максимальной длиной рабочего хода каретки 1600 мм и номинальной тяговой силой Q=200 кH.
114776 <0,9200000=180000 H
Стружкоделительные канавки на режущих зубьях протяжки.
Канавки делают на зубьях, имеющих длину режущей кромки 5...10 мм и размещают их в шахматном порядке. Так как длина режущих кромок не превышает 10 мм, то канавки не предусматриваем на всех зубьях, кроме первого.
Калибрующая часть протяжки.
Состоит из пяти зубьев одинакового диаметра, равного диаметру последнего режущего зуба. Стружечные канавки имеют такую же форму и размеры, как и на режущей, части протяжки. Шаг калибрующих зубьев принимают равным шагу режущих зубьев.
Передний угол принимают равным
, так как при эксплуатации протяжки в результате переточек затупившихся зубьев происходит постепенный переход калибрующих зубьев в режущие.
Задний угол имеет небольшую величину по сравнению с режущими зубьями . Это вызвано необходимостью обеспечить медленное уменьшение диаметральных размеров зубьев при переточках.
Заднюю направляющую часть у гранных и фасонных протяжек выполняют цилиндрической. Диаметр задней направляющей части:
. Предельное отклонение
по f 7.
Длину задней направляющей части принимаем по таблице 8 [2]
3. Проектирование и расчет червячной фрезы
Исходные данные: Вариант 3.
Таблица 2.1- Размеры шлицевого вала
z | b,мм | d1min, мм | аmin, мм | fном, мм | fоткл, мм | rmax, мм |
6 | 7 | 26,7 | 4,03 | 0,3 | +0,2 | 0,2 |
Исполнение шлицевого вала – В.
Вид инструмента – промежуточный.
Базирование происходит по наружному диаметру.
Обозначение вала – D - 6 28
32Н8/е8
7D9/h8;
6-число шлицев;
28- внутренний диаметр d, мм;
32- наружный диаметр D, мм;
7- ширина шлица b,мм.
Рисунок 2.1-Профиль торцового сечения шлицевого вала при центрировании по наружному диаметру
3.2 Расчет размеров вала
Наружный диаметр:
(1)
где - максимальная величина наружного диаметра;
- минимальная (номинальная) величина фаски.
Внутренний диаметр:
(2)
где - номинальный внутренний диаметр;
P - припуск на последующую обработку по таблице 2 [3].
Ширина шлица:
(3)
где - номинальная ширина шлица.
Диаметр начальной окружности:
(4)
3.3 Конструктивные элементы фрезы
Определим профиль боковой стороны зубьев фрезы аналитическим методом.
Определим расчетную величину шлица:
, (5)
поэтому заменяем теоретическую кривую одной дугой окружности радиуса R0 c координатами (x0, y0) по формулам:
(6)
где
(7)
, (8)
где - соответственно координаты точек т1 и т2 по середине профиля и у вершины зуба.
Р исунок 3.2 - Профиль боковой стороны зуба фрезы
Ординаты т1 и т2:
(9)
Абсциссы т1 и т2:
(10)
где
(11)
(12)
(13)
Подставим значения:
;
;
;
;
.
Максимальная погрешность замены в точках a и b:
(14)
где Fa,и Fb – радиусы в точках a и b:
(15)
где - координаты точек a и b:
(16)
(17)
Углы обката т. a и b в радианах:
(18)
(19)
;
;
;
;
;
;
;
Погрешность считается допустимой, если:
где TD – допуск на наружный диаметр.
.
т.к. 0.00091<0,026 (мм) погрешность замены допустимая.
Толщина зуба фрезы по начальной прямой:
; (20)
где n =6 – число шлицев.
.
Шаг зуба в нормальном сечении:
. (21)
Смещение уступа от начальной прямой
. (22)
Угол уступа =35
Ширина:
С = 2f = 20,3 = 0,6 мм (23)
Высота
(24)
Размеры канавки для выхода шлифовального круга при затыловании канавки:
Радиус r = 1 мм
Ширина
(25)
Глубина h3 = 1,5 мм
Высота зуба фрезы:
hO = (26)
Рисунок 3.3 - Профиль зуба в нормальном сечении
3.4 Геометрия фрезы
Передний угол = 0
Задний угол b = 11
На боковых сторонах:
; (27)
(28)
;
.
Значение бокового угла в пределах допустимого.
3.5 Расчет конструктивных и габаритных размеров фрезы
Фреза однозаходная, направление витков правое.
Угол подъема витка = 6
Направление передней поверхности зуба левое.
Ориентировочный наружный диаметр:
; (29)
Принимаем Deu =55 мм.
Число зубьев Z = 12
Величина затылования:
(30)
тогда округлим до К=2,5 мм
К1 =(1,2…1,7)*К=1.4* 2,5 =3,5 мм. (31)
Размеры канавки для выхода стружки
(32)
Угол канавки =30
Длина шлифованной части задней поверхности зубьев фрезы:
; (33)
Шаг витков фрезы в осевом сечении:
. (34)
Длина наружной части фрезы:
(35)
Общая длина фрезы
; (36)
где - длина буртика
.
Диаметр цилиндрической части буртика:
. (37)
Средний расчетный диаметр:
. (38)
Угол наклона стружечной канавки:
= = 6. (39)
Шаг стружечной канавки:
. (40)
Диаметр посадочного отверстия:
; (41)
.
Принимаем стандартное = 27 мм.
Рисунок 3.4 – Фреза червячная шлицевая
Литература
1.Методические указания по “РИ и ИОАП”. Разделы: ”Резцы фасонные”, ”Протяжки фасонные”, “Расчет червячных фрез для нарезания валов с прямобочными шлицами”.
2.Металлорежущий инструмент Г.Н.Сахаров, О.Б. Арбузов, Ю.Л.Боровой и др.-М.: Машиностроение,1989 г.
3.Щеголев А.В. Конструирование протяжек. М. Машиностроение, 1960г.
4.Г.Н. Кирсанов. Руководство по курсовому проектированию металлорежущих инструментов М.: Машиностроение, 1986г.
Заключение
В данном курсовом проекте мы изучили основы проектирования металлорежущего инструмента и его элементы. Проектирование режущих инструментов является одним из главных направлений в машиностроении. От качества и надежности, работоспособности режущих инструментов, применяемых в машиностроении, в значительной мере зависит качество и точность, получаемых деталей, производительность процесса обработки. При проектировании режущих инструментов необходимо знание теоретических основ конструирования и расчета инструментов, нужно уметь правильно определять лучшие для данных условий обработки конструктивные элементы инструментов и создавать оптимальную их конструкцию, учитывая условия эксплуатации, знать основные направления их совершенствования, пути повышения надежности и эффективности, представлять себе возможные направления и перспективы развития режущего инструмента.
0>0>