123827 (689640), страница 2
Текст из файла (страница 2)
Определяем число зубьев для колеса
.
Принимаем z2 =58
Фактическое передаточное число
.
Погрешность
.
3.4 Проверка передачи по контактной прочности
Определяем окружную скорость шестерни
м/c.
Принимаем Kv=1,2.
Определяем коэффициент ширины зубчатого венца относительного делительного диаметра шестерни
Принимаем K=1,1.
.
МПа.
=
.
Контактное напряжение в зубьях находится в допустимых пределах.
3.5 Проверка прочности при изгибе для второй ступени
Напряжение изгиба шестерни
,
где YF3=3,875, bw3=bw+1=69+1=70 мм.
Напряжение изгиба зубчатого колеса
,
где YF4=3,61, bw4=bw=70 мм.
Приведенные расчеты показывают, что напряжение изгиба меньше допустимых значений.
3.6 Расчет геометрических параметров зубчатой передачи
Определяем межосевое расстояние. Делительное межосевое расстояние вычисляется по формуле
мм.
Тогда межосевое расстояние
,
где
;
;
.
Исходя из условий, получаем, что
=231 мм.
Определяем угол зацепления
Тогда w=20.
Делительные диаметры
мм,
мм.
Основные диаметры
мм.
мм.
Шаг делительный
мм.
Шаг основной
мм.
Диаметры начальных окружностей
мм.
мм.
Диаметры впадин
114-2 (1+0.25) 6=99 мм,
348-2 (1+0.25) 6=333 мм,
где
,
.
Диаметры вершин
462-333-260.25=126 мм,
462-99-260.25=360мм.
Делительная толщина зубьев
мм,
мм.
Основная толщина зуба
мм,
мм.
Толщина зубьев по окружности вершин
,
,
мм,
мм.
Толщина зуба по начальной окружности
мм,
мм.
Определяем радиус кривизны
мм
мм
Коэффициент перекрытия
.
Находим
мм
мм
Находим скорости скольжения
, м/с
, м/с
, м/с
. м/с
Длина общей нормали
мм,
где
мм,
где
4. Проверка на статическую прочность при перегрузке
Для второй ступени
Hмм,
МПа,
МПа,
.
Найдем максимальное напряжения изгиба при перегрузке
МПа,
МПа.
Для стали 12ХН4А с sв=1200 МПа
МПа.
.
5. Предварительное определение диаметров валов
Для полного расчета вала на прочность необходимо знать изгибающие и крутящие моменты, действующие на вал. В данный момент расчета неизвестны изгибающие моменты. Для приближенного расчёта валов считаем, что они нагружены только крутящими моментами. При этом допускаемые напряжения кручения принимаем заниженными.
Исходя из условия прочности вала только на кручение
,
где T - крутящий момент на валу,
W - момент сопротивления.
Для полого вала
,
где do d - коэффициент пустотелости.
Получаем
Примем 0,8, = 65 Мпа для входного вала
Примем 0,75, = 75 Мпа для промежуточного вала
Примем 0,75, = 75 Мпа для выходного вала
Тогда:
;
мм
.
Принимаем диаметры валов из условий установки подшипников качения: d 1 = 45 мм, d 2 = 60 мм, d 3 = 85 мм.
6. Предварительный подбор подшипников
Опоры входного вала-шестерни нагружены осевой и радиальной силой. Устанавливаем подшипники шариковый радиально-упорный с разрезным внутреннем кольцом №176311 и роликовый радиальный №2111.
Для промежуточного вала устанавливаем подшипники конические радиально-упорные подшипники №7212.
Опоры третьего вала воспринимают большие радиальные и осевые нагрузки от несущего винта и зубчатого колеса, поэтому устанавливаем конические роликовые подшипники. По посадочному месту (d = 85 мм) предварительно принимаем роликовые конические подшипники №7217.
Табл.1
| Усл. обозначение | C | C0 |
| 176311 | 65000 | 52600 |
| 2111 | 32000 | 24200 |
| 7212 | 72200 | 58400 |
| 7212 | 72200 | 58400 |
| 7217 | 109000 | 91000 |
| 7217 | 109000 | 91000 |
7. Определение усилий в зацеплениях
7.1. Определение усилий в зацеплениях на первой передаче
Окружная сила Ft1 = 2 ∙ T1/d1, где T1 - максимальный момент на шестерне, Н ∙ м;
Ft=2∙0,941∙106 /120=15,69 ×кН.
Радиальная сила Fr1=Ft ∙ tg () ∙соsδ1, для стандартного угла = 20 tg () = 0,36397, cos δ1=0,9257.
Fr1=15,69∙0,36397∙0,9257=5,286 кН.
Fа1=Ft1 ∙ tg () ∙sinδ1
Fа1=15.69∙0.36397∙0.3782=2,159 кН
7.2. Определение усилий в зацеплениях на второй передаче
Окружная сила Ft3 = 2 T2/d3, где T3 - максимальный момент на шестерне, Н ∙ м;
Ft3=2∙2,269∙106/114= 39,8 кН.
Радиальная сила Fr3=Ft3 tg () (для стандартного угла = 20 tg () = 0,364.
Fr3=39,8∙0,364=14,49 кН.
7.3 Определение реакций в опорах валов
Упрощенно представим вал в виде балки нагруженной осевыми, окружными и радиальными силами, действующими в зацеплениях. Расчёт ведётся исходя из уравнений равновесия балки. Реакции опор определяем из уравнений статического равновесия: сумма моментов внешних сил относительно рассматриваемой опоры и момента реакции в другой опоре равна нулю. Входной вал: находим реакции опор. Схема нагружения в вертикальной плоскости.
∑МАв=0,RВв∙0,064+0,130-Fr∙0.019=0,RВв= 0,456 кН,
∑МВв=0,RАв∙0,064+0,130-Fr∙ (0,064-0,019) =0,RАв= 5,742 кН.
Схема нагружения в горизонтальной плоскости.
∑МАг=0,RВг∙0,064-Ft∙0,019=0,RВг= 4,658 кН,
∑МВг=0,RАг∙0,064 - Ft∙ (0,064-0,019) =0,RАг=11,031 кН.
Осевая реакция А=Fa.. Определяем изгибающие моменты.
М'В1= RАв∙0,019=0,109 кН∙м, М''В1= - RВв∙ (0,064-0,019) =0,021 кН∙м,
МГ1= RАг∙0,019=0,210 кН∙м.
Определяем суммарные реакции опор.
RA=
кН,
RВ=
кН.
Определяем суммарный момент.
М 'сум=
кН∙м,
М ''сум=
кН∙м.
Находим приведенные моменты.
М 'прив=
кН∙м,
М ''прив=
кН∙м.
Находим амплитуду приведенного момента
М 'пра=
кН∙м
М ''пра=
кН∙м
Промежуточный вал:
Находим реакции опор.
Схема нагружения в вертикальной плоскости.
∑МАв=0,RВв∙0,273-0,764-Fr2∙0,168+ Fr3∙0,086=0,RВв= 0,437 кН,
∑МВв=0,RАв∙0,273-0,764-Fr30,187+ Fr2∙0,105=0,RАв= 11,89 кН.
Схема нагружения в горизонтальной плоскости.
∑МАг=0,RВг∙0,273-Ft2∙0,168+ Ft3∙0,187=0,RВг= 2,88 кН,
∑МВг=0,RАг∙0,273+Ft2∙0,105 - Ft3∙0,187=0,RАг=21,23 кН.
Определяем суммарные реакции опор.
RA=
кН,
RВ=
кН.
Осевая реакция
Определяем осевые составляющие от радиальных нагрузок в опорах.
, где е=tga=0.35
кН,
кН.
Fa2=5,286 кН
SA>SB
SB - SA=6,222 кН,
RaA= SA=7,068 кН,
RaВ= SA - Fa2=1,782 кН,
Определяем изгибающие моменты.
М'В1= RАв∙0,086=1,02 кН∙м,
МГ1= RАг∙0,086=1,83 кН∙м,
М''В2= - RВв (0,086+0,082) - Fr3∙0,082=0,81 кН∙м,
М'В2= - RВв∙0,105=0,05 кН∙м,
МГ2= - RВг∙0,105=0,3 кН∙м.
Определяем суммарный момент.
М'сум1=
кН∙м,
М ''сум2=
кН∙м.
М''сум2=
кН∙м.
Находим приведенные моменты.
М'прив1=
кН∙м,
М''прив2=
кН∙м.
М ''прив2=
кН∙м.
Находим амплитуду приведенного момента
М 'пра=
кН∙м
М''пра=
кН∙м
М ''пра=
кН∙м
Выходной вал:
Находим реакции опор.
Схема нагружения в вертикальной плоскости.
∑МАв=0,RВв∙0,282+Fн∙ (0,282+0,597) - Fr4∙0,095=0,RВв= 3,63 кН,
∑МВв=0,RАв∙0,282+ Fн∙0,597-Fr4∙ (0,282-0,095) =0,RАв= 10,46 кН.
Схема нагружения в горизонтальной плоскости.
∑МАг=0,RВг∙0,282-Ft4∙0,095=0,RВг= 13,41 кН,
∑МВг=0,RАг∙0,282 - Ft4∙ (0,282-0,095) =0,RАг=26,39 кН.
Определяем суммарные реакции опор.
RA=
кН,
RВ=
кН.
Осевая реакция.
Определяем осевые составляющие от радиальных нагрузок в опорах,
, где е=tga=0,43
кН,
кН.
Fт=8,8 кН
SA>SB
SB - SA=4,501 кН,
RaA= SВ+ Fт =13,113 кН,
RaВ= SВ =4,312 кН,
Определяем изгибающие моменты.
М'В1= RАв∙0,095=0,994 кН∙м,
МВ2= Fн ∙0,597=0,24 кН∙м,
МГ1= RАг∙0,095=2,6 кН∙м.
Определяем суммарный момент.
М 'сум=
кН∙м,
М ''сум=
кН∙м.
Находим приведенные моменты.
М 'прив=
кН∙м,
М ''прив=
кН∙м.
Находим амплитуду приведенного момента
М 'пра=
кН∙м
М ''пра=
кН∙м
Входной вал:
Проверяем опасное сечение концентратор напряжения шестерня.
Кσ=2,5, где Кσ - эффективный коэффициент концентрации напряжений.
Определяем допускаемое напряжение при расчете на статическую прочность
[σ] Ι=
, где ST=2,
[σ] Ι=
МПа.
При проектировочном расчете запас усталостной прочности принимаем равным S=2
Допускаемое напряжение при расчете на усталостную прочность
[σ] Ι Ι Ι=
МПа,
Определяем диаметр вала из расчета на статическую прочность
м.
Определяем диаметр вала из расчета на усталостную прочность
м
Промежуточный вал:
Проверяем опасное сечение концентратор напряжения шлицы Кσ=2,5.
[σ] Ι Ι Ι=
МПа
Проверяем опасное сечение концентратор напряжения напряженная посадка ступицы на вал Кσ=4,5
[σ] Ι Ι Ι=
МПа
Проверяем опасное сечение концентратор напряжения шестерня Кσ=2,5.
[σ] Ι Ι Ι=
МПа
Определяем диаметр вала из расчета на статическую прочность по шлицам
м.
















