123654 (689549), страница 3
Текст из файла (страница 3)
3. Синтез зубчатого механизма.
Дано:
Схема механизма.
Угловая скорость входного звена ωд=125 с-1.
Угловая скорость выходного звена ωвм=15 с-1.
Модуль зубчатых колёс m=4мм.
Z5=13.
Z6=20.
На схеме представлен комбинированный зубчатый механизм, который состоит из:
- планетарного механизма (1, 2, 3, 4 и водила Н, колесо 4 остановлено);
- одноступенчатого зубчатого механизма с неподвижными осями (колёса 5 и 6).
3.1 Определение геометрических параметров зубчатой передачи.
Передаточное отношение многоступенчатого механизма равно произведению передаточных отношений его ступеней:
Для планетарного механизма:
Для одноступенчатой зубчатой передачи:
Передаточное отношение всего механизма:
Тогда
= 4
Запишем условие соосности:
Z1+Z2=Z4-Z3
Из него ясно, что Z4 должно быть больше Z3. Соотношение
заменяем отношением сомножителей a, b, c, d, каждый из которых соответственно пропорционален числу зубьев.
, следовательно, a + b = d - с.
Чтобы условие соосности выполнялось в любом случае, умножим правую часть равенства на левую, а левую - на правую:
(a + b) * (d - с) = (d - с) * (a + b).
Так как сомножители a, b, c, d пропорциональны числам зубьев, то для определения последних требуется умножить каждый сомножителей на коэффициент пропорциональности γ. Очевидно, что γ - любое положительное число. Таким образом, получим:
γ * (a + b) * (d - с) = γ * (d - с) * (a + b).
Преобразуем равенство к виду:
γ * a * (d - с) + γ * b * (d - с) = γ * d * (a + b) - γ * с * (a + b).
Теперь можно принять, что:
Z1 = γ * a * (d - с), Z2 = γ * b * (d - с),
Z3 = γ * с * (a + b), Z4 = γ * d * (a + b).
Разобьём передаточное отношение
на четыре сомножителя, которые должны быть целыми числами. Это можно выполнить различным образом:
Рассмотрим третий вариант: а = 2, b = 3, с = 3, d = 8. Решение ищем в ранее полученном виде:
Z1 = γ * a * (d - с) = 2 * (8 - 3) * γ = 2 * γ,
Z2 = γ * b * (d - с) = 3 * (8 - 3) * γ = 3 * γ,
Z3 = γ * с * (a + b) = 3 * (2 + 3) * γ = 3 * γ,
Z4 = γ * d * (a + b) = 8 * (2 + 3) * γ = 8 * γ.
Наименьшим должно быть зубчатое колесо Z1. Число зубьев колеса Z1 определяется из условия отсутствия интерференции зубьев при зацеплении с колесом Z2; Z1 должно быть более 17, так как при 17 зубьях правильное зацепление возможно лишь с зубчатой рейкой. Примем γ = 9, тогда:
Z1 = 18, Z2 = 27, Z3 = 27, Z4 = 72.
Условия правильного зацепления выполняется (согласно таблице):
Z1 > 17, а Z4 > Z3 + 8.
Определим возможное число сателлитов по внешнему зацеплению:
По внутреннему зацеплению:
Число сателлитов может быть не более трёх. Проверим условие сборки при трёх сателлитах:
Условие сборки выполняется, так как l = 30 - целое число.
Определяем диаметры делительных окружностей зубчатых колёс:
d1 = Z1 * m = 18 * 4 = 72 мм,
d2 = Z2 * m = 27 * 4 = 108 мм,
d3 = Z3 * m = 27 * 4 = 108 мм,
d4 = Z4 * m = 72 * 4 = 288 мм,
d5 = Z5 * m = 13 * 4 = 52 мм,
d6 = Z6 * m = 20 * 4 = 80 мм.
3.2 Построение плана линейных скоростей.
Построение плана возможно, если у каждого звена будут известны скорости минимум двух его точек. Известными являются скорости точек звеньев, движения которых задано, а так же скорости точек неподвижных геометрических осей вращения звеньев (они равны нулю).
При построении плана используем свойство эвольвентного зацепления: скорость полюса зацепления является общей для точек начальных окружностей зацепляющих колёс.
На чертеже строим схему механизма, учитывая масштабный коэффициент:
Определяем скорость точки А:
На плане линейных скоростей проводим ось Y-Y. От неё из точки А1 строим вектор-отрезок скорости т.А (А1а = 45 мм). Тогда масштабный коэффициент:
Теперь можно определить скорости всех точек звена 1, так как известны скорости двух его точек А и О ( скорость т.О равна нулю). Прямая, проходящая через точки а и О1, и будет изображать скорости всех точек звена 1.
Известно, что колёса Z2 и Z3 равны и их центры располагаются на одной оси (жёстко связаны). Следовательно скорости всех их точек будут располагаться на одной прямой, проходящей через точки В1 (полюс зацепления колёс Z3 и Z4, при чём колесо Z4 остановлено) и а (так как т.А - полюс зацепления колёс Z1 и Z2). Для того, чтобы определить скорость т.С, необходимо провести из т.С1 горизонтальную прямую до пересечения с прямой В1а. Отрезок С1с будет вектором скорости т.С:
Сателлит проходит через две точки: О' (её скорость равна нулю, так как она располагается на одной прямой с т.О) и С (её скорость известна), следовательно, скорости всех точек сателлита будут лежать на прямой, проходящей через точки О1 и с.
Скорость точки Е - отрезок построенный из точки Е1 до пересечения с прямой О1с:
Скорость т.D равна нулю, скорость т.Е (полюс зацепления Z5 и Z6) известна, значит скорость всех точек 6 звена есть прямая D1е.
3.3 Построение плана угловых скоростей.
Проводим горизонтальную прямую и перпендикулярно к ней строим отрезок Н произвольной величины (50 мм). Затем из конца отрезка (т.О) проводим лучи параллельные линиям распределения скоростей звеньев. на горизонтальной прямой отсекутся отрезки ωi, изображающие в масштабе
угловые скорости звеньев механизма.
По отношению отрезков может быть определено передаточное отношение между звеньями механизма.
Передаточное отношение от звена 5 к звену 6:
Погрешность определения передаточного отношения графическим методом относительно аналитического метода:
4. Синтез кулачкового механизма.
Дано:
Диаграмма аналоговых ускорений.
Схема кулачкового механизма.
φб.о.= 400.
φд.о.= 600.
αдоп= 250.
Smax=40 мм.
Рассчитаем недостающие фазовые углы:
φраб.= φд.о+ φу
φх.х.= φб.о+ φв
φу= φв
φ= φраб.+ φх.х.= φу + φв+600+400 =3600
φу = φв=1300
4.1 Построение графиков аналогов ускорений.
Строится он в произвольном масштабе (максимальная ордината должна быть не менее 80 мм) с учётом фазовых углов удаления φу, дальней остановки φд.о, возвращения φв, ближней остановки φб.о. При этом следует соблюдать условия равенства площадей F1=F2, F3=F4, так как площади F1 и F2, F3 и F4 в определённом масштабе представляют собой максимальное значение ординаты графика аналога скоростей соответственно на фазе удаления и фазе возвращения. Если φу= φв, то F1=F2=F3=F4.
Задаём оси координат аφ и φ. Затем строим график аналоговых ускорений с максимальной ординатой в 50мм, учитывая масштабные коэффициенты:
4.2 Построение графиков аналогов скоростей.
График аналогов скоростей строится графическим интегрированием графика аналогов ускорений. При интегрировании полюсное расстояние Н следует брать таким, чтобы максимальная ордината графика была не менее 80 мм. А также необходимо учитывать масштабный коэффициент:
4.3 Построение графиков аналогов перемещений
График аналогов перемещений строится графическим интегрированием графика аналогов скоростей. При интегрировании полюсное расстояние Н следует брать таким, чтобы максимальная ордината графика была не менее 80 мм. А также необходимо учитывать масштабный коэффициент:
4.4 Определение начального радиуса кулачка.
Параллельно траектории движения толкателя кулачкового механизма проводится прямая линия.
От произвольной точки на этой линии (нулевая точка) по направлению перемещения толкателя на фазе удаления откладываются отрезки 0-1, 0-2, 0-3, ..., 0-6, соответствующие отрезкам 1-1, 2-2, 3-3, ..., 6-6 фазы удаления графика перемещений. На фазе возвращения (тоже от нулевой точки) откладываются отрезки 0-10, 0-11, 0-12, ..., 0-16, соответствующие отрезкам 10-10, 11-11, 12-12, ..., 16-16 фазы возвращения графика перемещений, учитывая масштабный коэффициент:
Из точек 1, 2, 3, ... перпендикулярно траектории движения толкателя в сторону векторов его скоростей на фазах удаления и возвращения), повёрнутых на 900 в направлении угловой скорости кулачка ω1 откладываются соответствующие отрезки аналогов скоростей (из графика аналогов скоростей). Масштаб этих отрезков должен быть тем же, что и масштаб отрезков перемещения толкателя, отложенных на траектории его движения. Для этого соответствующую ординату с графика аналогов скоростей необходимо умножить на масштабный коэффициент
изображения аналогов скоростей. Получим истинную величину аналога скорости. Чтобы изобразить аналог скорости в масштабе перемещений, необходимо истинную величину аналога скорости разделить на масштабный коэффициент
перемещений:
Концы отрезков соединяют плавной кривой.
Касательно к полученной кривой под максимально допустимым углом давления αдоп к траектории движения толкателя проводятся лучи, таким образом, чтобы точка их пересечения О1 и нулевая точка О располагались по одну сторону от кривой. Расстояние между точкой, принимаемой за ось вращения кулачка и точкой О и будет представлять собой величину начального радиуса кулачка.















