123327 (689428), страница 2

Файл №689428 123327 (Механизм насоса с качающейся кулисой) 2 страница123327 (689428) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Угловое ускорение кулисы:

Составим векторное уравнение:

Проектируем на оси координат:

;

;

;

;

;

Расчет скоростей и ускорений для первого положения механизма.

Угловая скорость кулисы:

Угловое ускорение кулисы:

;

рад/с2 ;

Скорость точки С :

;

;

м/с;

Ускорение точки C :

;

рад/с2;

2 Силовой анализ рычажного механизма

2.1 Определение сил инерции

Исходные данные:

1=15,71 рад/с;

Q=3450 Н;

m5=35 кг;

m3’=12 кг;

m3’’=30 кг;

Определим силы инерции:

U5=-m5·aC;

U5= m5·PaC·Ka;

U5=35·30,6·0,5=535,5 (Н);

U3’=-m3’∙aS3’;

U3’=m3’·PaS’·Ka;

U3’=12·45·0,5=270 (Н);

U3’’=-m3’’∙aS3’’;

U3’’=m3’’·PaS’’·Ka;

U3’’=30·17·0,5=255 (Н);

Определим веса звеньев:

G5=m5·g;

G3’=m3’·g;

G3’’=m3’’·g;

G5=35·9,8=343,35 (Н);

G3’=12·9,8=117,72 (Н);

G3’’=30·9,8=294,3 (Н);

Сила полезного сопротивления Q=3450 Н.

Разбиваем механизм на группы Ассура в соответствии с формулой строения I(0,1)→II(2,3)→II (4,5). Начинаем силовой рассчёт самой удалённой от кривошипа диады.

2.2 Расчёт диады II (4,5)

Выделим из механизма диаду 4-5 и нагружаем её силами. Составляем уравнение равновесия диады 4-5:

∑Р(4,5)=, R50+Q+G5+U5+R43=0 (1)

Уравнение содержит два неизвестных- модули реакций R50 и R43, поэтому оно решается графически. Строим план сил по уравнению равновесия (1).

Для построения плана сил выбираем масштаб сил Кр

Кр= =3450/172,5=20 н/мм

Из плана сил определяем реакции:

R50= R50 Кр=66·20=1320 Н;

R43= R43 Кр=221·20=4420 Н;

2.3 Расчёт диады II (2,3)

Выделим диаду 2-3 и нагрузим её силами. Действие отброшенных звеньев 1,0 на третье заменяем действием реакций связей R21 и R30, которые требуется определить. Реакцию R21 направляем перпендикулярно линии движения ползуна, модуль неизвестен. Реакция R30 в шарнире О2 неизвестна ни по модулю ни по направлению; на схеме направляем её произвольно. Действие отброшенного звена 4 на третье известно: Реакция R34 равна по величине и противоположно направлена реакции R43, которая уже определена из плана сил диады II (4,5). Силы тяжести G3’ и G3’’ наносим на диаду в центрах масс стержней S3’ и S3’’. Силы инерции U3’ и U3’’ прикладываем в точках К’ и К’’, расположенных на расстоянии 2/3 длин стержней. Силы инерции направляем противоположно ускорениям центров масс согласно плана ускорений.

Составляем условия равновесия диады II(2,3):

∑Р(2,3)=0, R21+G3’+U3’+G3’’+U3’’+R34+R30=0 (2)

Данное уравнение содержит три неизвестных: модуль реакции R21, модуль и направление реакции R30. Значит уравнение (2) графически не решается. Реакция R21 может быть определена аналитически из уравнения моментов сил относительно точки О2.

∑М О2 (зв.2,3)=0, R21·AO2-U3’·hu3’+G3’·hg3’-U3’’·hu3’’-G3''·hg3’’-R34·O2C=0;

Откуда

R21= (U3’·hu3’- G3’·hg3’+ U3’’·hu3’’+ G3''·hg3’’+ R34·O2C)/ AO2

R21=(270·233-117,72·53+255·102-294,3·74+4500·132)/280=2539 Н

Теперь уравнение (2) содержит два неизвестных, а следовательно решается графически.

Строим план сил диады II(2,3) по уравнению (2). Считаем отрезки плана сил:

= U3’/Кр=270/20=13,5 мм.

= U3’’/ Кр=255/20=12,75 мм.

= R21/ Кр=2539/20=126,95 мм.

= G3’/ Кр=117,72/20=5,8 мм.

= G3''/ Кр=294,3/20=14,7 мм.

Согласно уравнению (2) строим сумму векторов сил, откуда находим:

R30= ·Кр=274·20=5480 Н.

2.4 Расчёт кривошипа

Силовой расчёт кривошипа состоит в определении реакции стойки на кривошип R10 и уравновешивающей силы Ру, имитирующей действие силы со стороны двигателя.

Реакция R21 известна, так как R12= R21. Величина Рур определиться из уравнения моментов сил относительно точки О1 кривошипа.

∑М О1 (зв.1)=0, Рур·АО1-R12·hR12=0

Рур’= R12·hR12/ АО1=2539 40/88=1154 Н

Реакция стойки на кривошип R10 определиться из условия равновесия кривошипа:

P(кр)=R21+Py+R10=0 (3)

По уравнению (3) строим план сил кривошипа, откуда определяем искомую реакцию R10

R10= R10·Кр=110·20=2200 Н.

2.5 Определение уравновешивающей силы методом Жуковского

Уравновешивающую силу можно определить с помощью план скоростей по методу рычага Жуковского.

Строим повёрнутый на 90˚план скоростей и приложим к нему все внешние силы, действующие на механизм. План скоростей рассматриваем как жёсткий рычаг с опорой в полюсе. Рычаг находится в равновесии под действием приложенных сил.

Составляем уравнение равновесия рычага в форме суммы моментов сил в форме суммы моментов сил относительно полюса плана скоростей.

∑МPv1=0

Pyp’·Pva-(Q+U5+G5)·PvC-U3’’·hU3’’-G3’’·hG3’’-U3’·hU3’+G3’·hG3’=0

Pyp’=((Q+U5+G5)·PvC+ U3’’·hU3’’+ G3’’·hG3’’+ U3’·hU3’- G3’·hG3’)/ Pva

Pyp’=((3450+535,5+343,35)·47+255·33+294,3·24+270·69-117,72·13)/179

Pyp’=1173 Н

Сравниваем значения Pyp и Pyp’, найденные двумя способами

δ=( Pyp’- Pyp)/ Pyp’

δ=(1173-1154)·100%/1173=1,62%

2.6 Определение мощности

Мгновенная потребная мощность привода насоса без учёта потерь мощности на трение определяется соотношением:

Npy=Pyp·VA=1173·3,46=4058,58 Вт

Мощность привода, затраченная на преодоления только полезной нагрузки:

NQ=Q·Vc=3450·0,95=3277,5 Вт

Потери мощности во вращательных кинематических парах:

N10=R10·f’·(ω1-ω0)·rц=2200·0,132·15,71·0,025=114,5 Вт

N12=R12·f’·(ω1-ω3)·rц=2539·0,132·10,77·0,025=90,2 Вт

N30=R30·f’·(ω3-ω0)·rц=5480·0,132·4,94·0,025=89,3 Вт

N45=R45·f’·(ω3-ω5)·rц=4420·0,132·4,94·0,025=72,05 Вт

Где rц-радиус цапфы вала, rц=0,025 м,

f’- приведенный коэффициент трения, f’=(1,2…1,5)f=0,132

Потери мощности в поступательных кинематических парах:

N23=R23·f’·VA’A=2539·0,132·1,65=553 Вт

N34=R34·f’·VC’C=4420·0,132·0,85=495 Вт

N50=R50·f’·VC=1320·0,132·0,95=165,5 Вт

Суммарная мощность трения:

Nтр=∑Ni=N10+N12+N30+N45+N23+N34+N50

Nтр=114,5+90,2+89,3+72,05+553+495+165,5=1579,2 Вт

Мгновенная потребляемая мощность двигателя:

N=NРу+Nтр

N=4058,58+1579,2=5637,78 Вт

2.7 Определение кинетической энергии и приведенного момента инерции механизма

Кинетическая энергия механизма равна сумме кинетической энергии звеньев:

Тмех=∑Тi

Для механизма насоса с заданными параметрами кинетическая энергия звена равна:

∑Тi=Т3+Т5=

Где

JO2’= =12·0,352/3=0,49 кг·м2

JO2’’= =30·0,1552/3=0,24 кг·м2

Т3=(0,49+0,24)·4,942/2=8,9 Дж

Т5=35·0,95/2=16,62 Дж

Тмех=8,9+16,62=25,52 Дж

За звено приведения обычно выбирают ведущее звено. Так как у исследуемого механизма ведущим звеном является кривошип, то кинетическая энергия определится по формуле:

Tпр=

Откуда находим приведенный момент инерции:

Jпр=

Jпр=2·25,52/15,712=0,2 кг·м2

3 Геометрический расчет зубчатой передачи. Проектирование планетарного механизма

3.1 Геометрический расчет зубчатой передачи

Исходные данные:

Число зубьев шестерни Z5=11;

Число зубьев колеса Z6=25;

Модуль m=6 мм;

Нарезание проводится методом обкатки инструментом реечного типа, который профилируется на основе исходного контура по ГОСТ 13755-81 и имеет следующие значения: угол профиля ; коэффициент высоты головки ; коэффициент радиального зазора ;

Определяем геометрические параметры эвольвентной передаче.

Определяем минимальный коэффициент смещения:

Z5<17и Z5+Z6≥34, следовательно, передача равносмещенная,

x5=(17-Z5)/17=(17-11)/17=0,35 мм;

x6=-x5=-0,35 мм;

Определяем делительное межосевое расстояние:

а= 0,5·m·(Z5+Z6)= 0.5·6·(11+25)=108 мм;

Определяем высоту зуба:

h=m(2ha*+c*)=6(2·1+0,25)=13,5 мм;

4) Делительная высота головки зуба:

ha=m·(ha*+x);

ha5= m·(ha*+x5)= 6·(1+0,35)= 8,1 мм;

ha6=m·(ha*+x6)=6·(1-0,35)= 3,9 мм;

5) Делительная высота ножки зуба:

hf= m·(ha*+C-x);

hf5= m·(ha*+C-x5)= 6·(1+0,25-0,35)= 5,4 мм;

hf6= m·(ha*+C+x6)= 6·(1+0,25+0,35)= 9,6 мм;

Диаметр делительной окружности:

d5= m·Z5= 6·11= 66 мм;

d6= m·Z6= 6·25= 150 мм;

Диаметр основной окружности:

db5= m·Z5·cos(α)= 6·11· cos(20)= 62,05 мм;

db6= m·Z6·cos(α)= 6·25· cos(20)= 147 мм;

Диаметр окружности вершин зубьев:

da=m·Z+2m·(ha*+x);

da5=m·Z5+2m·(ha*+x5)=6∙11+2·6(1+0,35)= 82,2 мм;

da6=m·Z6+2m·(ha*+x6)=6∙25+2·6(1-0,35)= 157,8 мм;

Диаметр окружностей впадин зубьев:

df=mZ-2m(ha*+C*-x);

df5=mZ5-2m(ha*+C*-x5)=11·5-2·6(1+0,25-0,35)=55,2 мм;

df6=mZ6-2m(ha*+C*-x6)=25·5-2·6(1+0,25+0,35)=130,8 мм;

10) Делительная окружная толщина зуба:

S=0,5·π·m+2m·x·tg(α);

S5=0,5·3,14·6+2·6·0,35·tg(20)= 10,9 мм;

S6=0,5·3,14·6-2·6·0,35·tg(20)= 7,9 мм;

Делительный шаг:

P= π·m = 3,14·6=18,84 мм;

12) Основной шаг:

Pb= π·m cos(α)= 3,14·6·0,94=17,7 мм;

13) Радиус кривизны галтели

ρ=0,38m=2.28 мм;

14) Строим зубчатую передачу с масштабным коэффициентом Kl=0,00025 м/мм;

15) Проверяем коэффициент торцевого перекрытия

а) аналитический метод:

1,57

б) графический метод:

где – длина активной линии зацепления.

3.2 Определение передаточного отношения планетарной ступени и подбор числа зубьев колес

Исходные данные:

nкр=150 мин-1;

nдв=1500 мин-1;

Z5=11;

Z6=25;

знак передаточного отношения привода (-)

Составляем общее передаточное отношение механизма:

Рассчитаем передаточное отношение и через исходные данные:

Из исходного уравнения определяем передаточное отношение планетарной ступени:

;

Составляем формулу Виллиса для планетарной передачи:

;

;

Запишем через числа зубьев передаточное отношение обращенного механизма:

;

Подбираем числа зубьев:

; ;

Z1+Z2=Z4-Z3;

Z1+Z2=30+30=60

Z3+Z4=85-25=60

Z1=30, Z2=30, Z3=25, Z4=85

По выбранным числам зубьев определяем размеры колес:

d=m·Z;

d1=6·40=240 мм;

d2=6·40=240 мм;

d3=6·25=150 мм;

d4=6·85=510 мм;

d5=6·11=66 мм;

d6=6·25=150 мм

Масштабный коэффициент построения Кl=0,001 м/мм;

Для построения плана скоростей редуктора определяем скорость точки А:

м/с;

Строим план скоростей. Масштабный коэффициент плана скоростей

мс-1/мм;

3.3 Определение частот вращения зубчатых колес аналитическим методом

n1= nдв=1500 мин-1;

n6= nкр=150 мин-1;

;

мин-1;

;

мин-1;

мин-1;

Значения частот вращения получим графическим методом:

мин-1;

мин-1;

мин-1;

мин-1;

4 Синтез и анализ кулачкового механизма

4.1 Диаграммы движения толкателя

Исходные данные:

Максимальный подъём толкателя h=29 мм;

Фазовый рабочий угол φ=290;

Дезаксиал е=0 мм;

nкр=150 об/мин;

Z5=11;

Z6=25

Угол давления α=25;

По заданному графику V-t графическим диференцированием получим график а-t, графическим интегрированием - S-t. Базы Н1=20 мм, Н2=25 мм. Методом исключения общего параметра t получим график V-S, a-S, a-V. Масштабные коэффициенты графиков:

Ks= м/мм;

Kv= мс-1/мм

Kt= c/мм;

Ka= мс-2/мм

4.2 Определение минимального радиуса кулачка

Минимальный радиус кулачка выбирается из условия выполнения угла давления. Для этого строим совмещённый график S’-V, где S’- текущее перемещение в стандартном масштабе КS’=0,0005 м/мм, V- аналог скорости.

На совмещённом графике на горизонтальных линиях откладываем аналоги скорости в масштабе КS’

x1= мм

x2=

К совмещённому графику проводим две касательные под углом давления α. Ниже точки пересечения касательных выбирается центр вращения кулачка и соединяется с началом совмещённого графика. Это и будет минимальный радиус кулачка.

R0’=R0’·KS’=40·0,0005=0,02 м;

4.3 Построение профиля кулачка

Профилирование кулачка выполняется методом обращённого движения. Для этого строим кулачок в масштабе Кl=0,00025 м/мм. Проводим окружность радиусом R0’ и окружность радиуса е. Откладываем угол φр=290. Делим его на 12 частей и через точки деления проводим оси толкателя в обращённом движении. Вдоль осей толкателя откладываем текущее перемещение толкателя от окружности R0’. Соединяя полученные точки получим центровой профиль кулачка. Радиус ролика выбираем из условия:

rp=(0,2…0,4)R0’=0,25∙40=10 мм

Минимальный радиус действительного профиля:

R0=R0’-rp=40-10=30 мм

Обкатывая ролик по центровому профилю получаем действительный профиль.

Public Sub kul()

Dim I As Integer

Dim dis1, dis2, R, a1, a2, arksin1, arksin2, BETTA, BET As Single

Dim R0, FIR, FI0, FII, SHAG, E As Single

Dim S(1 To 10) As Single

R0 = InputBox("ВВЕДИТЕ МИНИМАЛЬНЫЙ РАДИУС КУЛАЧКА RO")

FIR = InputBox("ВВЕДИТЕ РАБОЧИЙ УГОЛ КУЛАЧКА FIR")

FI0 = InputBox("ВВЕДИТЕ НАЧАЛЬНОЕ ЗНАЧЕНИЕ УГЛА ПОВОРОТА КУЛАЧКА FI0")

E = InputBox("ВВЕДИТЕ ДЕЗАКСИАЛ E")

For I = 1 To 10

S(I) = InputBox("ВВЕДИТЕ СТРОКУ ПЕРЕМЕЩЕНИЙ S(" & I & ")")

Next I

FIR = FIR * 0.0174532

SHAG = FIR / 10

FI0 = FI0 * 0.0174532

FII = FI0

For I = 1 To 10

dis1 = (R0 ^ 2 - E ^ 2) ^ (1 / 2)

dis2 = S(I) ^ 2 + R0 ^ 2 + 2 * S(I) * dis1

R = dis2 ^ (1 / 2)

a1 = E / R

a2 = E / R0

arksin1 = Atn(a1 / (1 - a1 ^ 2) ^ (1 / 2))

arksin2 = Atn(a1 / (1 - a2 ^ 2) ^ (1 / 2))

BETTA = FII + arksin1 - arksin2

BETTA = BETTA * 180 / 3.1415

Worksheets(1).Cells(I, 1) = R

Worksheets(1).Cells(I, 2) = BETTA

FII = FII + SHAG

Next I

End Sub

Список использованных источников

  1. Машков А.А. Теория механизмов и машин. Мн., 1971.

  2. Артоболевский И.И. Теория механизмов и машин. М., 1975.

  3. Фролов К.В., Попов С.А., Мусатов А.К. и др. Теория механизмов и машин под ред. К.В. Фролова М., 1986.

  4. Попов С.А., Тимофеев Г.А. Курсовое проектирование по теории механизмов и механике машин. М., 1998.

Характеристики

Тип файла
Документ
Размер
1,43 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6617
Авторов
на СтудИзбе
295
Средний доход
с одного платного файла
Обучение Подробнее