122794 (689232), страница 5
Текст из файла (страница 5)
Повторный пуск компрессора после аварийного останова возможен только после нажатия кнопки SB2.
Подготовка пульта к работе.
Провести внешний осмотр пульта.
Установить пульт на место эксплуатации и подключить его в соответствии со схемой подключения кабелей.
Подать питание на пульт.
Включить тумблер «Сеть».
Порядок работы.
Работа в режиме с ручным управлением.
Установить тумблер выбора режима управление в положение
Нажать пусковую кнопку «1». При этом на цифровом индикаторе высвечивается цифра «0».
При управлении агрегатом с поршневым компрессором одновременно с нажатием пусковой кнопки «1» включается маслонасос, а затем, при установке золотника в положение, соответствующее минимальной производительности, включается компрессор. Перемещение золотника осуществляется осуществляют в ручную с помощью местных кнопок «SB3» (уменьшение производительности) и «SB4» (увеличение производительности).
После пуска компрессора золотник устанавливают в положение, соответствующее требуемой производительности.
Останов компрессора осуществляют нажатием кнопки «0».
Работа в режиме автоматического управления.
Установить тумблер выбора режима в положение
Нажать пусковую кнопку «1». При этом на цифровом индикаторе высвечивается цифра «0».
После нажатия пусковой кнопки «1» пуск и останов компрессора осуществляются автоматически от команеды командоаппарата.
Принудительный останов компрессора осуществляется нажатием стоповой кнопки «0».
Перевод с одного режима на другой может осуществлятся при работающем компрессоре.
Сброс аварийного светового сигнала после устранения неисправности осуществляется кратковременным отключением питания пульта тумблером «Сеть «.
4. Расчет температуры в холодильной камере
Расчет будем производить на основании [7]. В инженерной практики принято промышленные холодильные камеры описывать линейным дифференциальным уравнением 1‑го порядка с постоянными коэффициентами. Камеры являются весьма инерционными объектами. Так, например, постоянная времени Т рассматриваемой холодильной камеры равна 100 ч.
Однако промышленные холодильные камеры фактически являются многоемкостными объектами и более точно их следует описывать дифуравнениями выше первого порядка с тем, чтобы проверить насколько целесообразна их апроксимация дифуравнениями первого порядка.
В [7] предлагается описывать холодильную камеру линейным уравнением второго порядка с постоянными коэффициентами:
d2t dt
Т1 * Т2 + (Т1 + Т2) + t = ty
d2 d
Используя уравнение (1) и, пренебрегая запаздыванием объекта, проводили исследования двухпозиционной системы регулирования в холодильной камере. Расчет проводили методом Рунге – Кутта (исходный текст программы приведен в приложении).
Метод Рунге – Кутта предназначен для дифференциального уравнения второго порядка вида (c учетом того, что ty изменяет свое значение в зависимости от того работают компрессоры или происходит нагрев воздуха в камере за счет естественного притока тепла, или же при отрицательных температурах окружающей среды когда воздух в камере исскуственно подогревается за счет нагревательных элементов или температура в камере падает за счет естественного оттока тепла через стены камеры)
d2t
t»= = F (, t, t’, ty),
d2
имеющий погрешность R(h5), реализовался с помощью следующих формул [8]:
К1=h * F(i; t i; t’i; tyi);
К2=h * F(i +(h/2); t i +(h/2)* t’i+(h/8)* К1;t’i + (К1/2); tyi);
К3=h * F(i +(h/2); t i +(h/2)* t’i+(h/8)* К1;t’i + (К2/2); tyi);
К4=h * F(i +h; t i +h* t’i+(h/2)* К3;t’i + К3; tyi);
t i+1=t i+ h*[t’i +(К1+ К2 + К3)/6];
t’i+1 =t’i + (К1+ 2*К2 + 2*К3 + К4)/6
Расчет проводился на участке от 0 ч до 200 ч при следующих начальных условиях:
t 0= t0;
t’0 = 0.
Вариант 1. Т1 =100 ч, Т2 =10 ч, заданный диапазон 0,5 – 1 С, установившаяся температура при ее росте 10 С и установившаяся температура при ее снижении минус 3 С. При этом были получены следующие результаты: фактический диапазон поддержания температуры составил 0,45 – 1,25 С, а период колебаний 54,2 часа. График переходного процесса и протокол работы приведен в приложении.
При описании холодильной камеры линейным дифуравнением первого порядка следующего вида:
dt
Т + t = ty
d
провели аналогичные исследования системы двухпозиционного регулирования, т.е. полагали Т= Т1 +2* Т2=120 ч, а остальные данные были такими же, как и в варианте 1. При этом температура поддерживалась в заданном диапазоне (запаздыванием пренебрегали), а период колебаний составил 22,5 ч.
Из приведенных данных следует, что фактический диапазон поддержания температуры при более точном математическом описании холодильной камеры увеличивается в 1,6 раза а период колебаний возрастает в 2,5 раза. Следовательно для приведенных исходных данных рассматривать камеру в упрощенном варианте не следует.
Вариант 2. Т2 = 0,5 ч, а остальные данные аналогичны варианту 1. По данному варианту получили, что температура поддерживается в заданном диапазоне, а период колебаний составил 21,3 ч. Исследования в упрощенном объекте (Т = 101 ч) показало, что период колебаний получился равным 19 ч. Как видим, для варианта 2 апроксимация холодильной камеры апериодическим звеном первого порядка вполне допустима.
Вариант 3. Поддержание рабочей температуры в камере происходит за счет работы электронагревателей при Т1 =100 ч, Т2 =15 ч, заданный диапазон 0,5 – 1 С, установившаяся температура при ее росте 4 С и установившаяся температура при ее снижении минус 5 С. При этом были получены следующие результаты: фактический диапазон поддержания температуры составил 0,307 – 1,082 С, а период колебаний 73 часа. График переходного процесса и протокол работы приведен в приложении.
Вариант 4. Т2 =1.5 ч, а остальные данные аналогичны варианту 3. По данному варианту получили, что температура поддерживается в заданном диапазоне, а период колебаний составил 30,3 ч. Исследования в упрощенном объекте (Т = 103 ч) показало, что период колебаний получился равным 29 ч. Как видим, для варианта апроксимация холодильной камеры апериодическим звеном первого порядка вполне допустима.
Как мы можем видеть из рассмотренного выше целесообразно производить апроксимацию холодильной камеры апереодическим звеном первого порядка только в тех случаях когда постоянная времени Т2 составляет не более чем 0,01…0,025 Т1 то есть ее влияние на качество переходного процесса – несущественно.
В случае, когда постоянная времени Т2 составляет 0,1Т2 то эта апроксимация приводит к значительным погрешностям при расчетах, что недопустимо в современной инженерной практике.
На основании вышеизложенного можно сделать следующий вывод: в современной инженерной практике при использовании средств вычислительной техники необходимо для повышения точности расчетов рассматривать промышленную холодильную камеру, как апериодическое звено второго порядка (при Т2 > 0,01…0,025 Т1)
5 Технико-экономическое обоснование проекта
5.1 Расчет капитальных вложений
Стоимость строительного объема камеры(Кзд)
Кзд=Vзд*Сзд, где
Vзд – объем строительный модуля м3
Сзд – стоимость 1 м3 строительства
Кзд=6*18*6*40=25920 грн.
Стоимость оборудования
№ п/п | Наименование оборудования | Количество | Стоимость за ед., грн. | Суммарная стоимость, грн. |
1 | Компрессор (55кВт) | 2 | 2100 | 4200 |
2 | Конденсатор | 1 | 1600 | 1600 |
3 | Градирня ТВ‑20 | 1 | 800 | 800 |
4 | Воздухоохладитель ВОП – 50 | 2 | 1300 | 2600 |
5 | Вспомогательное оборудование | 2 | 1000 | 2000 |
Итого | 10200 | |||
Транспортные расходы (10%) | 1020 | |||
Итого | 11220 | |||
Монтаж (10%) | 1120 | |||
КИП, автоматика (7%) | 785 | |||
Специальные работы (1%) | 112 | |||
Итого | 13237 |
Суммарные капитальные затраты составят 36160 грн.
5.2 Расчет эксплуатационных расходов (расчет себестоимости холода)
Себестоимость холода для проектируемого модуля рассчитываем методов калькулрования себестоимости 1000 кДж холода.
Расчет выполняем по следующим статьям калькуляции:
1. Вспомогательные материалы
2. Электроенергия
3. Вода
4. Зароботная плата производственных рабочих.
5. Отчисления по зароботной плате
6. Цеховые работы
Расчет затрат по статье «Вспомогательные материалы»
Включает расходы на холодильный агент, смазочные материалы, ветошь.
а) Расчет стоимости годового потребления хладагента
С2а=qа *Sа, где
qа – годовое потребление аммиака;
Sа – стоимость 1 т аммиака, грн. (принимаем 4000 грн.)
q2а=qа’+qа «’, где
qа’ – эксплуатационное годовое потребление хладагента, т
qа’’ – годовой расход хладагента при ремонте.
С2а = 4000*0.21=840 грн.
б) Расчет стоимости смазочных материалов за год:
С см.м. =qм*Sм=0,321*4100=1316 грн.
где qм – годовое потребление смазочных материалов, т;
Sм – стоимость одной тонны масла ХА – 30, грн. (принимаем 4100 грн./т)
qм=qц*nц*t*T=4*10-2*22*365=321,2 кг =0,321 т
где nц =4 – количество цилиндров
qц – норма массового расхода масла на один цилиндр, кг;
t – число часов работы в сутки, час;
T – количество рабочих дней в году.
в) Стоимость использованной ветоши составляет 100 грн.
Итого (по вспомогательным материалам):2256 грн.
Расчет затрат по статье «Электроэнергия «выполняем по формеле:
Ст.э. =q э *а э,
где а э – стоимость 1 кВт*ч, грн. (принимаем 0,12 грн/кВт*ч).
q э – годовое потребление электроенергии кВт*ч, определяем в зависимости от годовой холодопроизводительности:
Qг 0,37*2,5*109
q э =q’ э = =22070 кВт*ч
4190 4190
Годовая холодопроизводительность