108992 (689181), страница 2

Файл №689181 108992 (Трех- и четырехволновое рассеяние света на поляритонах в кристаллах ниобата лития с примесями) 2 страница108992 (689181) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Нелинейная дифракция позволяет получить новое уравнение пространственного синхронизма при генерации второй гармоники. В работе [7] исследовали генерацию второй гармоники (ВГ) в слоисто-неоднородном кристалле ниобата бария-натрия. Была прослежена температурная зависимость интенсивности ВГ при нелинейной дифракции света в окрестности сегнетоэлектрического фазового перехода. Выше температуры этого перехода доменов нет, поэтому интенсивность ВГ резко падает, не опускаясь до нуля, так как существует остаточная поляризованность слоёв.

В работе [6] получены спектры нелинейной дифракции в полидоменном кристалле ниобата бария-натрия при параметрическом рассеянии света. При этом вектор нормали слоёв был перпендикулярен вектору накачки . Наблюдалось рассеяние в первом и втором порядке дифракции, смещённого по углу относительно нулевого порядка дифракции. По полученным спектрам определены отклонение направления роста слоёв от оптической оси кристалла и период регулярной доменной структуры .

В работе [8] получены одновременно в одном кристалле вторая и третья гармоники излучения 1,064 мкм. При генерации второй гармоники в уравнение волновых векторов входил волновой вектор нелинейной дифракции первого порядка (m=1), а при генерации третьей гармоники - третьего порядка (m=3). Кристалл состоял из участков с периодическими доменами различной толщины. В каждом процессе участвовала область с доменами, толщина которых удовлетворяла уравнению пространственного синхронизма.

3. Экспериментальная установка для наблюдения СПР.

Основными элементами экспериментальной установки (рис.3) для получения спектров спонтанного параметрического рассеяния на поляритонах (ПР-спектрограф) являются: аргоновый лазер (1) с длиной волны L=488 нм, нелинейный кристалл (6), две призмы Глана (поляризатор (5) и анализатор (6)), трёхлинзовая оптическая система (8) для получения углового спектра и спектрограф (10) для получения частотного спектра.

Излучение лазера после направляющих зеркал (2) проходит через диафрагмы (3); служащие для контроля положения накачки. Далее поляризатор (5) выделяет поляризацию накачки, параллельную щели спектрографа. Анализатор (6) пропускает сигнальную волну с поляризацией, перпендикулярной выделенной поляризации накачки. Интерференционный фильтр (9) задерживает оставшееся излучение накачки.

Рис.3. Оптическая схема для наблюдения параметрического рассеяния.

1. Ar+лазер ; 2. Зеркало ; 3. Диафрагма ; 4. Длиннофокусная линза ; 5. Призма Глана (поляризатор) ; 6. Образец (кристалл) ; 7. Призма Глана (анализатор) ; 8. Трехлинзовая система ; 9 Интерференционный фильтр ; 10. Спектрограф.

Глава 2. Исследование характеристик однородных и слоистых кристаллов ниобата лития с различным содержанием примесей методом спектроскопии СПР.

1. Образцы кристаллов LiNbO3.

Исследовались кристаллы ниобата лития с различной концентрацией примесей (Табл.1). Кристалл ниобата лития - одноосный отрицательный в видимой области спектра, имеющий большое двулучепреломление n=ne-no-0.1. Концентрация примесей (Nd и Mg) была измерена с помощью рентгеновского микроанализа. Однородные кристаллы No.4,5,6 выращены вдоль оптической оси Z.

Слоистые кристаллы No.2,3 имели форму параллелепипеда. Примесь неодима практически не влияет на значения показателей преломления. Слои параллельны грани . Оптическая ось расположена в плоскости ZY под углом 57о к нормали слоев. Кристаллы ниобата лития с вращательными слоями роста и закрепленными на них доменами выращивают путём вытягивания из расплава. В образцах ниобата лития с периодической доменной структурой варьировалась концентрация магния от слоя к слою, соответственно от слоя к слою менялся показатель преломления на малую величину, n10-4 [10]. Для выращивания монодоменных кристаллов, которые имеют слои с однонаправленным вектором спонтанной поляризации, прикладывают небольшое напряжение к образцу.

ТАБЛИЦА 1.

Кристалл LiNbO3

No.

Концентрация магния.

NMg ,масс.%

Концентрация неодима.

NNd ,масс.%

1

0

0

2

0.33

0.31

3

0.41

0.32

4

0.68

0

5

0.79

0

6

1.04

0

2 Показатели преломления кристаллов в видимом и инфракрасном

диапазоне спектра излучения.

2.1 Дисперсия в видимой и ближней ИК области спектра.

Были измерены дисперсионные характеристики кристаллов Nd:Mg:LiNbO3 (No.2,3) в видимом и ближнем ИК диапазоне методом наименьшего отклонения луча, используя гониометр-спектрометр ГС-5. Для этого из части кристалла вырезалась призма. На частоте 1.06 мкм для визуализации излучения использовался прибор ночного видения. Абсолютная ошибка измерения составляла в среднем 0.0002. Значения no и ne являются средними по области кристалла, значительно превышающей период модуляции линейной и нелинейной восприимчивостей. Результаты измерения показателей преломления кристаллов No.5,6 представлены в работе [10]. Значения обыкновенного и необыкновенного показателей преломления в кристалле ниобата лития без примесей No.1 получены в статье [11]. Сравнение полученных данных и результатов работ [10,11] позволяет судить о влиянии примеси на дисперсионные характеристики. На Рис.4,5 приведены зависимости изменения no и ne от концентрации примеси магния на длине волны 546 нм и 1064 нм. Видно, что зависимости имеют одинаковый характер в различных областях спектра, причем наличие примеси неодима в кристаллах No.2,3 не влияет заметно на ход этих кривых.

Дисперсионные характеристики no() и ne() рассматриваемых кристаллов могут быть описаны формулой Селмейера:

, (10)

где A,B,C,D - коэффициенты Селмейера. Значения коэффициентов Селмейера для кристаллов No 1,2,3,5,6 даны в таблице 2, при этом длина волны используется в нанометрах. С использованием этих коэффициентов были построены дисперсионные кривые, а затем посчитано no() и ne() - отличие дисперсий кристаллов с примесями от дисперсий беспримесного кристалла (рис.6,7), также на графики нанесены экспериментальные точки. Можно заметить, что поведение дисперсии необыкновенного показателя преломления полидоменного кристалла No.2 сильно отличается от хода ne() монодоменных кристаллов. Особенности в спектральном поведении показателя преломления полидоменного кристалла могут быть объяснены влиянием зарядов, находящихся на стенках доменов.

Таблица 2.

Коэффициенты Селмейера кристаллов ниобата лития

с различной концентрацией примеси магния.

Кристалл No.

Поляризация

A

10-4B

10-4C

108D

1

o

e

4.9025

4.5808

11.8522

9.9699

4.6746

4.3743

2.5609

2.1225

2

o

e

4.911

4.5999

11.3803

8.3609

5.0317

6.2881

3.0712

4.69

3

o

e

4.9001

4.5581

11.5737

9.7078

4.8182

4.4267

3.0052

2.3873

5

o

e

4.9007

4.5574

11.2695

9.2166

4.9275

4.7665

3.9162

3.1645

6

o

e

4.8853

4.5667

11.0338

8.7097

5.0611

5.3125

3.7467

3.7893

Рис.4. Зависимость изменения показателей преломления в кристаллах ниобата лития от

концентрации примеси магния на длине волны 546 нм.

Рис.5. Зависимость изменения показателей преломления в кристаллах ниобата лития от

концентрации примеси магния на длине волны 1064 нм.

Рис.6. Кривые отличия дисперсий необыкновенного показателя преломления кристаллов с примесью магния от дисперсий беспримесного кристалла и экспериментальные точки для кристаллов No 2....,

No 3....,

No 5....,

No 6.....

Рис.7. Кривые отличия дисперсий обыкновенного показателя преломления кристаллов с примесью магния от дисперсий беспримесного кристалла и экспериментальные точки для кристаллов No 2....,

No 3....,

No 5....,

No 6.....

2.2 Дисперсия в поляритонной области спектра.

Дисперсионные характеристики кристаллов в среднем ИК диапазоне мы получили используя спонтанное параметрическое рассеяние. Этот метод позволяет измерить мнимую и действительную часть диэлектрической проницаемости в области спектра, где поглощение кристалла велико: на частотах фононного поляритона и на верхней поляритонной ветви. В отличие от прямого измерения мы получаем информацию об ИК спектре используя дисперсионные характеристики в видимой области спектра. При процессе СПР частоты и волновые вектора взаимодействующих волн должны удовлетворять условиям частотного и пространственного синхронизма (1). Если мы знаем дисперсию кристалла на частотах накачки и сигнальной волны, то мы можем получить дисперсию на поляритонных частотах, используя уравнения (1). На установке, изображенной на рис.3, получены двумерные частотно-угловые распределения интенсивности рассеянного излучения кристаллов No.2,3,4,5. По этим спектрам определена дисперсия обыкновенного показателя преломления кристаллов на частотах 1.7-10 мкм и 17,5-20,8 мкм. На нижней поляритонной ветви указана ошибка, которая появляется при измерении частоты и угла рассеяния сигнальной волны. На верхней поляритонной ветви ошибка не превышает размера символа, обозначающего экспериментальную точку. Таким образом погрешность измерения показателей преломления спектра методом СПР не позволяет нам заметить влияние примеси на дисперсию кристаллов в ИК области. Следует заметить, что только в кристалле No.5 использовалась геометрия рассеяния, в которой “эллипс” рассеяния на верхней поляритонной ветви достигал длиноволной области видимой части спектра. Возможно, если рассмотреть все кристаллы в той геометрии рассеяния, в которой можно получить дисперсию верхней поляритонной ветви на частотах поляритона больших 3000 см-1, то мы сможем обнаружить отличие в дисперсионных характеристиках кристаллов на соответствующих частотах. Но вблизи фононной частоты методом СПР это сделать невозможно, так как дисперсия здесь имеет большую крутизну.

Характеристики

Тип файла
Документ
Размер
4,62 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее