42045 (687010), страница 2

Файл №687010 42045 (Применение методов математической статистики и теории вероятностей в задачах теоретической лингвистики при анализе устной и звучащей речи на русском и английском языках) 2 страница42045 (687010) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

X

f*100%

2,85%

0%

0,95%

0%

0%

0%

0%

0%

0,95%

Самые распространённые слова в данном стихотворении имеют длину в 6 фонем (17,14%)

Проведу аналогичные действия со стихотворением «Колыбельная»:

A Cradle Song

Sweet dreams form a shade,

O'er my lovely infants head.

Sweet dreams of pleasant streams,

By happy silent moony beams

Sweet sleep with soft down,

Weave thy brows an infant crown.

Sweet sleep Angel mild,

Hover o'er happy child.

Sweet smiles in the night,

Hover over my delight.

Sweet smiles Mothers smiles

All the livelong night beguiles.

Sweet moans, dovelike sighs,

Chase not slumber from thy eyes,

Sweet moans, sweeter smiles,

All the dovelike moans beguiles.

Sleep sleep happy child.

All creation slept and smil'd.

Sleep sleep, happy sleep, 1

While o'er thee thy mother weep

Sweet babe in thy face,

Holy image I can trace.

Вариационные ряды длин словоупотребления в фонемах:

4 5 4 1 5

4 3 5 7 3

4 5 4 7 6

3 4 7 4 4

4 4 4 4

3 3 5 2 6 5

4 4 6 5

6 2 3 4 5

4 6 2 2 4

6 4 3 6

4 6 5 6

2 2 7 4 7

4 5 7 4

4 3 6 4 2 3

4 5 4 6

2 2 7 5 7

4 4 4 4

2 7 5 3 6

4 4 4 4

4 4 2 2 4 3

4 4 2 2

4 3 4 2 3 5

Дискретный вариационный ряд длины словоформ в фонемах в данном стихотворении будет таков:

X

1

2

3

4

5

6

7

N

1

15

13

41

14

12

9

Где так же, как и в предыдущем примере, X – признак (количество фонем в слове), N – сумма всех вариант, – варианты, – число повторений вариант.

N = 105

Очевидным является то, что дискретные вариантные ряды двух стихотворений сильно отличаются друг от друга, это можно представить нагляднее, если вместо абсолютных частот указать относительные частоты в процентах:

X

f*100%

0,95%

14,28%

12,38%

39,04%

13,33%

11,42%

8,57%

Различие между длинами словоформ в рассматриваемых стихотворениях состоит в том, что у английского автора преобладают слова в четыре фонемы (39,04%), в то время как у Зинаиды Гиппиус – в шесть. Так же несложно заметить, что количество вариантов в стихотворении «The Cradle Song» значительно меньше, чем в «Свободный стих».

2.2 Непрерывные вариационные ряды

Непрерывные вариационные ряды, как и дискретные, широко распространены в анализе устной и звучащей речи, так как здесь значения признака:

длина

частота

интенсивность звука

могут отличаться друг от друга на как угодно малую величину. Поскольку отличия между вариантами имеют непрерывный характер, используется только интервальное построение вариационного ряда. Для исследования данных фонетических аспектов нужны специальные измерительные приборы для замеров звучания слогов. Несмотря на невозможность проведения данного анализа, я расскажу о его основном принципе.

При наличии результатов эмпирических исследований, создаются непрерывные интервальные ряды, где - длина слогов в мс, а интервалы вариант выглядят следующим образом – ( , ( ), ( ) и так далее.

Ширина интервала определяется по формуле Стерджесса:

.

При этом интервальная разность k округляется до ближайшего целого числа, число интервалов l определяется из выражения

.

2.3 Графическое построение дискретных лингвистических вариационных рядов для рассматриваемых стихотворений

Несмотря на его простоту, слабой стороной табличного описания колебания признака является недостаточная наглядность. Поэтому для достижения большей наглядности я использую графическое изображение интересующего меня распределения (длин словоформ по фонемам) – многоугольник распределения признака (полигон).

2.4 Ряды распределения дискретных случайных величин

Так как дискретная случайная величина может принимать возможные значения с различными вероятностями, чтобы охарактеризовать её в статистическом смысле, необходимо указать вероятности всех её значений.

Законом распределения вероятностей дискретной случайной величины называется таблица соответствия между возможными значениями этой величины и их вероятностями. Эта таблица – ряд распределения дискретной случайной величины.

Для первого стихотворения:

X

1

2

3

4

5

6

7

8

9

0.1238

0.0952

0.0762

0.1238

0.1333

0.1714

0.1047

0.0762

0.0476

X

10

11

12

13

14

15

16

17

18

0.0285

0

0.0095

0

0

0

0

0

0.0095

Для второго стихотворения:

X

1

2

3

4

5

6

7

0.095

0.1428

0.1238

0.3904

0.1333

0.1142

0.0857

По определению, сумма вероятностей событий в каждом из стихотворений должна быть равна 1

Сделаю проверку результатов. Для первого стихотворения:

0.1238 + 0.0952 + 0.0762 + 0.1238 + 0.1333 + 0.1714 + 0.1047 + 0.0762 + 0.0476 + 0.0285 + 0.0095 + 0.0095 = 0.9997 -

подсчёты произведены с небольшой погрешностью

Для второго стихотворения:

0.095 + 0.1428 + 0.1238 + 0.3904 + 0.1333 + 0.1142 + 0.0857 = 0.997 1

Из данных результатов следует, что предыдущие исследования сделаны без ошибок.

2.5 Математическое ожидание дискретной случайной величины

Математическим ожиданием дискретной случайной величины Х называется сумма произведений её всех возможных значений на соответствующие вероятности, обозначается через М(Х).

Если случайная величина принимает значения , соответственно с вероятностями , , то

Стоит заметить, что математическое ожидание является величиной постоянной, его часто называют статистическим значением случайной величины, а также центром распределения, так как около него группируются отдельные значения случайной величины.

Для «Свободного стихотворения»:

M(X) = 1 0.1238 + 2 0.0952 + 3 0.0762 + 4 0.1238 + 5 0.1333 +6 0.1714 + 7 0.1047 + 8 0.0762 + 9 0.0476 + 10 0.0285 + 12 0.0095 + 18 0.0095 = 5.0738

Для «The Cradle Song»:

M(X) = 1 0.095+ 2 0.1428+ 3 0.1238+ 4 0.3904+ 5 0.1333 +6 0.1142+ 7 0.0857 = 4.1797

Соответственно, M(X) > M(X) , исходя из данного результата можно утверждать, что первое стихотворение сложнее для восприятия на слух, чем второе, что немаловажно для анализа звучащей речи.

2.6 Дисперсия дискретной случайной величины

Дисперсией дискретной случайной величины Х называется математическое ожидание квадрата её отклонения от среднего статистического значения и обозначается через D(X).

Характеристики

Список файлов курсовой работы

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее