25371 (686817), страница 6
Текст из файла (страница 6)
F (pk) = 1 - F (δ) (16)
Статистическое среднее значение капиллярного давления в микронеоднородной пористой среде можно определить через функцию распределения:
(17)
где рк0 - капиллярное давление в самых мелких поровых каналах;
ркт - капиллярное давление в самых крупных каналах (трещинах).
Для определения перепада капиллярных давлений при противотоке необходимы средние значения их для заводненных ркв, нефтенасыщенных ркн каналов, которые равны:
(18)
(19)
где α=4σcosθ; рк, ркi и ркт капиллярные давления соответственно в поровых каналах с размером δmin, δi и δmах.
Теперь можно определить глубину капиллярного внедрения воды в нефтенасыщенные слои, застойные зоны и линзы. Из условия материального баланса
qвt = Shcp ηв δср. в/δср = V ηв ηo (20)
Из соотношений (12) и (20) можно получить зависимость для глубины пропитки пористой среды при капиллярном противотоке без учета гравитационных сил:
(21)
ηв - коэффициент вытеснения нефти водой в заводненных каналах;
η0= δср. в/δср - коэффициент охвата заводнением нефтенасыщенных слоев при капиллярном противотоке.
Остальные параметры кгар, Г0, δср и ∆рк определяются по соотношениям (13), (11), (15), (18) и (19). Подставив их в (21) и приняв mв = mн = m/2, что следует из равенства суммарного расхода жидкости при противотоке нулю, получим выражение для глубины капиллярной пропитки:
(22)
которое аналогично ранее полученному экспериментально в работе [11]. По соотношениям (21) или (22) можно определить не только среднюю глубину, но и скорость капиллярной пропитки. Приняв следующие значения параметров, входящих в формулу (22): σ = 30 дин/см2, соsθ = 0,6, ηв = 0,9, μср=2 спз, Г0 = 2, а значения т = 18%, кср= 1д, кср. н=1,6 д, кср. в=0,4 д, в соответствии с распределением размера пор реального песчаника из работы получим: средняя глубина капиллярной пропитки в течение 1сек с начала пропитки составит 0,05 см, через 1 ч достигнет 3 см, через 1 сутки 14,7 см, через 1 месяц 80,5 см, через 1 год 2,8 м и т.д. Как видно, скорость капиллярной пропитки затухает во времени, а глубина пропитки даже в идеализированных условиях пористой среды - постоянного сечепия каналов и смачиваемости - в течение длительного периода не превышает минимальной мощности нефтенасыщенных слоев при послойном заводнении реальных пластов. Если же учесть, что капиллярная пропитка в реальных условиях должна происходить в пористой среде с неточными поровыми каналами и переменной смачиваемостью, то значения глубины капиллярного внедрения воды во времени будут значительно меньшими.
5. Влияние капиллярной пропитки на показатели заводнения неоднородных пластов
Опыт разработки нефтяных месторождений свидетельствует о том, что вследствие слоистой неоднородности продуктивных пластов происходит их послойное обводнение, в результате чего на контакте заводненных и нефтенасыщенных слоев создается резкий скачок насыщенности.
Капиллярные силы образуют некоторую "размытую" зону, где насыщенность меняется от начальной до насыщенности в заводненном слое, подобно "стабилизированной зоне" на фронте вытеснения. Исходя из этого, процесс заводнения неоднородных пластов можно представить в следующем виде (рис.6). При фронтальном вытеснении происходит послойный охват заводнением, а под действием капиллярных сил - дополнительно межслойный охват заводнением смежных менее проницаемых нефтенасыщенных слоев. Следовательно, полный коэффициент охвата неоднородного пласта наводнением:
βохв. полн= βохв. посл + βохв. кап (23)
где βохв. посл - коэффициент охвата при послойном заводнении;
βохв. кап - дбполнительный коэффициент охвата вследствие капиллярной пропитки.
Для определения охвата неоднородных пластов при фронтальном послойном заводнении βохв. посл в настоящее время имеется уже много методов, которые не учитывают капиллярной пропитки и предполагают существование статического скачка насыщенности между заводненными и пефтенасыщенными слоями. Поэтому представляет интерес метод оценки дополнительного охвата заводнением пластов за счет капиллярной пропитки.
Рассмотрим пласт, состоящий из слоев различной проницаемости. Изменение проницаемости от слоя к слою описывается некоторой функцией распределения F (к), соотношение вязкостей нефти и воды µ0= 1. Пусть на момент tа полностью заводнились слои с проницаемостью k ≥ kа. Слои с проницаемостью k ≤ kа заводнились лишь частично.
Текущий дополнительный коэффициент охвата заводнением пласта за счет капиллярной пропитки в общем виде равен:
βохв. кап = S h (24)
где S - текущая поверхность контакта нефти и воды; h - текущая высота (глубина) капиллярной пропитки или "размытой зоны".
Вследствие бессистемного случайного характера расположения заводненных слоев и объеме залежи с ними могут оказаться в контакте нефтенасыщенные слои любой проницаемости k < kа. Из этого следует, что плотность вероятности поверхности контакта отдельных заводненных слоев f (S) адэкватна плотности вероятности распределения проницаемости в пласте f (k), т.е. f (S) = f (k).
Безразмерная поверхность всех полностью заводненных слоев равна 1-f (ka). Суммарная поверхность обводнения слоев, которые затоплены водой лишь частично, равна отношению (kи. ср/ kа) L F (kа).
Вероятность того, что все обводненные слои будут по всей их поверхности контактировать с нефтенасыщенными, равна 1 - βохв. посл.
С увеличением коэффициента охвата пласта заводнением повышается вероятность слияния обводненных трубок тока, вследствие чего уменьшается и поверхность контакта нефти с водой. Следовательно, текущая безразмерная поверхность контакта нефти с водой может быть выражена следующим соотношением:
S = [1 - F (ka) + (kн. ср/ ka) L F (ka)] (1 - βохв. посл) (25)
где F (ka) - интегральная функция распределения для проницаемости ka, или доля объема пласта проницаемостью ka от общего объема; kн. ср - средняя проницаемость нефтенасыщенной части пласта; βохв. посл - текущий коэффициент охвата заводнением пласта (на момент прорыва воды по слою с проницаемостью ka); L - длина от контура залежи до линии отбора жидкости, которая принимается равной единице.
Для глубины капиллярной пропитки можно написать:
dh = υпропdt (26)
где υпроп - скорость капиллярной пропитки; t-продолжительность пропитки.
В работе показано, что при капиллярном противотоке сохраняется закон Дарси, поэтому:
υпроп = (∆pкапkcp) / hμ (27)
Перепад капиллярного давления при противотоке с учетом гравитационных сил равен: ∆pкап = (2σ cosθ) / c √ (kcpm) (28)
где σ - поверхностное натяжение на контакте нефти с водой; θ-угол смачивания; т - пористость; с = 2/7*103 порометрический коэффициент; kcp= χ2 kн - средняя проницаемость нефтенасыщенных зон пласта для капиллярной пропитки (по нормали к поверхности контакта нефти и воды);
χ - коэффициент анизотропии, учитывающий уменьшение проницаемости в вертикальном направлении. Имея в виду, что путь, проходимый контуром при фронтальном вытеснении по какому-либо слою к моменту прорыва воды по слою с проницаемостью ka, равен x = k L / ka, приращение времени капиллярной пропитки dt можно заменить и представить в виде:
dt = (m μ L dx) / k ∆p = (L2 m kcp) / ∆p ka k (29)
Подставив (27), (28) и (29) в (26), получим соотношение:
(30)
Решение этого уравнения дает зависимость для глубины капиллярной пропитки в неявном виде. Если же учесть, что в послойно обводненном пласте она одновременно может происходить и вверх и вниз, а суммарное действие гравитационных сил при этом будет весьма малым, то, пренебрегая вторым слагаемым в скобках выражения (30) и проинтегрировав его, получим зависимость для глубины капиллярной пропитки.
(31)
Теперь, подставив вместо S и h соотношения (25) и (31) в (24), найдем зависимость дополнительного коэффициента охвата заводнением за счет капиллярной пропитки от поверхностно-капиллярной характеристики пласта, темпа разработки и степени заводнения залежи.
Прямым следствием капиллярной пропитки (противотоков) послойно обводненных пластов будет "перемешивание" нефти и воды - повышение нефтенасыщенности заводненных слоев и водонасыщенности нефтенасыщенных слоев, т.е. выравнивание насыщенности фаз в объеме залежи. В результате этого в заводненных слоях будет появляться подвижная нефть, а в нефтенасыщенных - подвижная вода, что в свою очередь будет обусловливать изменение соотношения расходов нефти и воды, т.е. обводненности добываемой продукции.
При наличии капиллярных противотоков в послойно обводненном пласте содержание нефти в добываемой продукции на момент прорыва воды по слою с проницаемостью kа будет определяться выражением:
(33)
Здесь hн = F (kа) - мощность нефтенасыщенных слоев; hв = 1-F (kа) - мощность заводненных слоев; k'н (s), k'в (s) - фазовые проницаемости для нефти и воды в заводненных слоях;
k'н, k'в - фазовые проницаемости для нефти и воды в зоне капиллярной пропитки.
Проницаемость для нефти и воды в заводненных слоях и зоне капиллярной пропитки является функцией насыщенности соответствующей фазой. Согласно исследованиям в зоне капиллярной пропитки можно принимать насыщенность нефтью и водой одинаковой sн = sв = 0,5, хотя это условие, по-видимому, необязательно для всех случаев пропитки. Нефтенасыщенность для заводненных слоев будет равна:
Sн = Sо. н + (βохв. кап 0,5/βохв.) (34)
где Sо. н - остаточная нефтенасыщешшсть заводненных слоев.
Зная насыщенности различных зон пласта на разных этапах заводнения, по графикам относительных проницаемостей можно определить фазовые проницаемости для нефти и воды и содержание нефти в добываемой продукции с учетом капиллярной пропитки.
Для определения kв`, kв`, kн`, kн`, можно использовать аппроксимационные зависимости фазовых проницаемостей работы. Тогда содержание нефти в добываемой продукции будет выражаться отношением.
Относительный объем жидкости, прокачанной через пласт при заводнении с капиллярной пропиткой, выражается отношением:
τ = kcp / ka
kор - средняя проницаемость всего пласта.
Выше рассмотрен метод определения дополнительного охвата заводнением вследствие капиллярной пропитки для неоднородно-слоистого пласта, когда изменение проницаемости слоев описывается некоторой функцией распределения F (k). Для условий трещиноватого пласта, т.е. при заводнении пласта, состоящего из системы слабопроницаемых блоков и высокопроницаемых трещин, характеристика капиллярной пропитки будет, очевидно, иной. В экспериментальных работах на основе изучения капиллярной пропитки водой пористых блоков показано, что функция пропитки достаточно хорошо для практических целей аппроксимируется зависимостью:
t=tα (36)
где т - пористость блоков; Sа - насыщенность блоков водой к моменту времени tа; S - осредненная удельная поверхность блоков; А - постоянный коэффициент; μн - вязкость нефти.
Расход воды, поступающей в блоки породы через поверхность F (χ1 χ2 χ3, ν) (где χ - координаты; v - некоторый момент времени), ограничивающую объем пласта V (v), охваченного заводнением к моменту времени v ≤ t, определяется:
∫ φ [t-ν (χ1 χ2 χ3,)] dν = q (t) (37)
Если в выражении (36) время заменить интегралом (29), то оно будет идентично (31). Это дает возможность при расчетах дополнительного охвата капиллярной пропиткой трещиновато-пористых пластов глубину капиллярного внедрения воды в (24) приближенно определять как длину стабилизированной зоны, полагая, что x ≈ λ:
h = λ = ξ* - ξ/* = T*a / aa (38)
где q - расход воды, отнесенный к единице мощности h, ширине пласта b и осредненному размеру блока l*; ξ* = (χ + λ) / l* координата фронта пропитки; ξ/* = χ / l* - координата фронта вытеснения за счет внешнего перепада давления; T*a - время образования стабилизированной зоны в пористой среде со средней проницаемостью; T* - время пропитки каждого элемента пористой среды с проницаемостью kcp*, определяемое из опыта (практически постоянно). Распределение насыщенности в каждый момент времени, необходимое для определения относительных проницаемостей kв`, kв``, kн`, kн``, при расчете изменения содержания нефти в добываемой продукции можно находить из формулы:
Ф (S) = kв` (s) / [kв` (s) + kн` (s)], μ0 = 1 (39), (40)
При принятых допущениях q (Т) = соnst, когда
τ (ξ) = T - T*,