166030 (685435), страница 2

Файл №685435 166030 (Термодинамико-топологический анализ) 2 страница166030 (685435) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)


(а) (б)

Рис.3. Взаимное расположение изотермоизобарического многообразия, векторов ноды жидкость–пар и градиентов температуры (а) и давления (б) в трехкомпонентных системах.

Из сравнения уравнений (10) и (11) следует частный вывод. Для некоторого вектора состава жидкой фазы отнимем одно уравнение от другого. При определенных и получим следующий результат [8]:

(14)

или:

(15)

Поскольку и – некоторые скалярные множители, то для закрепленного состава системы градиенты стационарного поля температур кипения при и градиенты стационарного поля давлений при колинеарны. Последнее согласуется с физическим смыслом, так как в этом случае точка состава смеси принадлежит определенному изотермоизобарическому многообразию, которое является многообразием уровня как для температуры, так и для давления. Однако векторы имеют разный знак, и их линейная (в точке) комбинация всегда равна нулю:

(16)

Следовательно, эти два вектора всегда лежат на одной прямой, ортогональной многообразию уровня, и имеют противоположное направление.

Подробное исследование уравнений (10) и (11) было проведено в [8]. Отмечено, что полученные результаты можно использовать для выявления различных корреляций и тонких закономерностей фазового равновесия жидкость–пар в многокомпонентных системах, в частности:

- для определения взаимосвязи топографического представления равновесной температуры кипения смеси и хода -линий, в том числе единичных;

- для определения экстремумов температуры (давления) по направлению;

- для корреляции хода изотермоизобар и коэффициентов распределения компонентов;

- для получения некоторых общих выводов относительно различных термодинамических свойств путём исследования полученных уравнений в избыточных функциях.

Подробное исследование свойств скалярных полей равновесных температур двухфазных трехкомпонентных систем было проведено в [9-11].



Вывод

Таким образом, можно сделать вывод, что исследование особенностей хода векторного поля нод и скалярного поля равновесных температур позволяет установить уравнение их взаимосвязи. Анализ уравнения и экспериментальные исследования показывают, что в случае идеальной паровой фазы наблюдается совпадение хода единичных α-многообразий и многообразий условных экстремумов поверхности равновесных температур конденсации. Изучение хода складок на поверхности равновесных температур многокомпонентных смесей играет определяющую роль в процессе экстрактивной ректификации. Уравнение взаимосвязи позволяет существенно оптимизировать разработку химико-технологических процессов на этапе качественного анализа, когда выявляются особенности структуры концентрационного пространства исходной разделяемой смеси, обуславливающие выбор схемы процесса.



Список литературы

1. Серафимов Л.А. Теоретические принципы построения технологических схем ректификации неидеальных многокомпонентных смесей // Автореф. докт.д.исс. – М.: МИТХТ. 1968. -44 с.

2. Жаров В.Т., Серафимов Л.А. Физико-химические основы дистилляции и ректификации. – Л.: Химия. 1975. -239 с.

3. Серафимов Л.А. Термодинамико-топологический анализ и проблемы разделения многокомпонентных полиазеоторопных смесей // Теорет. основы хим. технологии. 1987. Т.21. № 1. сс.74–85.

4. Тимофеев В.С., Серафимов Л.А. Принципы технологии основного органического и нефтехимического синтеза: Учебное пособие для вузов. – М.: Химия. 1992. -452 с.

5. Серафимов Л.А., Тимофеев В.С., Писаренко Ю.А., Солохин А.В. Технология основного органического и нефтехимического синтеза. Совмещенные процессы. – М.: Химия. 1993. -412 с.

6. Серафимов Л.А. Термодинамико-топологический анализ диаграмм гетерогенного равновесия многокомпонентных смесей // Журн. физ. химии. 2002. Т.76. № 8, сс.1351–1365.

7. Сторонкин А.В. Термодинамика гетерогенных систем. В 2 ч.Л.: ЛГУ. 1967. -447 с.

8. Серафимов Л.А., Фролкова А.К. Исследование модифицированной формы уравнения Ван-дер-Ваальса–Сторонкина // Теорет. основы хим. технологии. 1999. Т.33. № 4. сс.341–349.

Характеристики

Тип файла
Документ
Размер
1,37 Mb
Предмет
Учебное заведение
Неизвестно

Список файлов ВКР

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6489
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее