165938 (685430), страница 3
Текст из файла (страница 3)
1.5 Мінімізація розмірів включень вторинних фаз
В розвитку розплавних методів існують визначені тенденції, які закономірно призвели до створення матеріалів з високими надпровідними характеристиками. До цих тенденції слід віднести такі [6,19,21]:
1) послідовна зміна характеру високотемпературної обробки з метою підвищення нерівноважності всіх стадій процесу;
2) використання методів синтезу, що ведуть до отримання більш однорідних і дисперсних вихідних оксидних порошків;
3) застосування прекурсорів, що знаходяться в різних вихідних станах;
4) введення різноманітних добавок.
В першому випадку спроби зводились, в основному, до зменшення тривалості обробки зразків при максимальних температурах. Це дозволило попередити ріст частинок вторинних фаз, який інтенсивно протікає вище перитектичної температури, і, очевидно, є одною з причин переходу від класичного MTG (Melt-Textured-Growth) метода до його модифікованих варіантів.
QMG (Quenched-Melt-Growth) метод став спробою “хімічного” посилення ступеня нерівноважності системи, при якій фаза 211 утворюється в області термодинамічної стабільності не за рахунок відносно повільного розпаду YBa2Cu3O7–δ “знизу”, а в результаті швидкої взаємодії Y2O3 з розплавом “зверху”. Застосовані досліди з надшвидкого охолодження краплин високотемпературного розплаву (Y2O3 + L) в вакуумованій вертикальній металічній трубі є, певно, одним з найбільш вдалих прообразів технічного втілення цього методу.
Важливою альтернативою QMG – методу може слугувати введення хімічних добавок, наприклад, платини (PDMG (Platinum-Doped-Melt-Growth)- метод) і діоксиду церію. При цьому утворення і розпад Pt-вмісних малостійких складних оксидів (Ba4CuPt2O9, R2Ba2CuPt2O8, R2Ba3Cu2PtO10 і ін.), мабуть, не тільки чинить дію на процеси зародкоутворення, але й гальмує ріст окремих граней кристалітів фази 211, чим змінює їх форму і розмір, а також попереджує коалесценцію в більш крупні агрегати.
Нарешті, в ряді методів (MPMG (Melt-Powder-Melt-Growth), PMP (Powder-Melt-Process)) використовують додаткове подрібнення як вихідних реагентів, так і проміжних продуктів синтезу, що призводить до підвищення ступеня їх диспергування і однорідності змішування. Зроблена успішна спроба використати високогомогенну суміш барій купрату та оксиду міді з оксидом ітрію, яка імітує фазовий склад QMG – зразків (SLMG (Solid-Liquid-Melt-Growth)- метод). Ще однією, принципіально новою, модифікацією цього ж метода є направлена рекристалізація аморфізованого загартованого розплаву при температурах приблизно на 100оС нижче температури перитектичного розпаду фазу 123 (QDR (Quench and Directional Recrystallization)- метод), при якій достатньо швидко (3-5 хв) утворюється фаза 123 і ультра дисперсна “зелена” фаза, до того ж високого ступеня текстури надпровідної кераміки вдається досягнути за рахунок стандартних заходів зонного плавлення з пониженою температурою гарячої зони [6].
Позитивний ефект описаних вище нововведень стає більш зрозумілим, якщо врахувати багаточисельні експериментальні дані, що свідчать про те, що розмір частинок фази 211 пов'язаний з передісторією системи, незважаючи на використовувані при синтезі експериментальні дії [6]. Причиною цього вважають можливість проміжного утворення перегрітого метастабільного (конгруентного) розплаву фази 123, розпад якого на розплав і фазу 211 суттєво полегшується на різних дефектах структури, в основному на межах зерен, кількість яких набагато більше в дрібнокристалічному матеріалі. З іншого боку, надлишкова “зелена” фаза може слугувати інгібітором росту граней фази 123 при спіканні, призводячи до більш дрібнозернистої структури. Добавки (Pt, GeO2) лише змінюють поверхневу енергію на межі “фаза 211-розплав” і формують частинки фази 211 іншої морфології – голкоподібної. Згідно з розглянутим вище механізмом це призводить до більш легкого “диспергування” анізотропних частинок фази 211 з фронтом кристалізації, що рухається і, в кінцевому результаті, до утворення більш дисперсних виділень фази 211 в матриці фази 123. Склад композиту регулювався шляхом “екстракції” надлишкового BaCuO2 із стехіометричного зразка фази YBa2Cu3O7–δ пористою підкладкою, яка складається з Y2BaCuO5 (LPRP (Liquid-Phase-Removal-Process)-метод).
Таким чином, із аналізу літературних даних слідує [6,19], що одним із основних факторів модифікування “розплавних технологій” і універсальним критерієм їх еволюції виступає підвищення дисперсності та однорідності розподілу виділень вторинних фаз. Вплив фази 211 на мікроструктурні і функціональні характеристики зразків носить комплексний характер. Ці фази проявляють вплив на повноту протікання процесів при кристалізації, міцність матеріалу, морфологію зерен надпровідників і поява нових центрів пінінга. В кінцевому результаті це і призвело до суттєвого покращення функціональних параметрів матеріалів, що одержуються.
1.6 Роль газової атмосфери
Газообмін з навколишнім середовищем, як вже вище обговорювалось, повинен відігравати достатньо важливу роль при отриманні ВТНП-матеріалів. Зміна парціального тиску кисню дозволяє вирішити низку важливих задач:
- знизити температуру кристалізації і забезпечити сумісність розплаву з легкоплавкою підкладкою;
- змінити, спосіб створення перенасичення шляхом плавної зміни парціального тиску кисню, що може призвести до більш контрольованого перебігу процесу і до зменшення кількості домішок в кінцевому продукті;
- вирішити проблему “спінювання” і деформації матеріалу, який піддається розплавній обробці;
- забезпечити контроль ширини області гомогенності і впорядкування катіонів для твердих розчинів на основі фази 123.
Вплив парціального тиску кисню на технологічні процеси отримання ВТНП-матеріалів малодосліджений. При заниженому вмісті кисню спостерігали зниження температури перитектичного плавлення фази 123, а також виникнення легкоплавких евтектик [33] з участю Cu (I) (770-800 оС). Це дозволило знизити температуру вирощування монокристалів фази 123 (до 910оС при рО2=5. 102… 2. 104 Па), а також отримувати [7,9] товсті плівки з підшаром із срібла (Tпл.(Ag) ≈ 960 oC ) і достатньо щільні полікристалічні об’ємні зразки. Оригінальним синтетичним заходом, що вимагає подальшого розвитку, є проведення ізотермічної кристалізації шляхом повільного підвищення парціального тиску кисню, починаючи процес при низьких парціальних тисках і закінчуючи його в чистому кисні [19].
Очевидно, що густина надпровідних матеріалів повинна бути максимальна, проте при використанні “розплавних” технологій в процесі кисневого обміну зразки змінюють лінійні розміри і форму [6,7,19], що призводить до збільшення об’єму зразка і появі в ньому розвинутої системи пор, від яких дуже складно позбутися. Для вісмут – вмісних ВТНП-стрічок в срібній оболонці цій проблемі приділяється серйозна увага. Для ВТНП – матеріалів системи R-Ba-Cu-O цей ефект, на жаль, практично не вивчений, хоч він також відіграє суттєву негативну роль, особливо при отриманні матеріалів з високими транспортними характеристиками. Експерименти показують [6,7], що основними фактороми, які впливають на кисневий обмін між зразком і газовою фазою, є фазовий склад, хімічна однорідність, відносний склад в твердій фазі CuI, парціальний тиск кисню і спосіб компактування зразка.
В даний час отримання монокристалів і плавленої кераміки в інертній атмосфері широко застосовується для 123 фаз з “легкими” РЗЕ (La, Nd, Sm, Eu), проте це викликано, в першу чергу, необхідністю зменшення ступеню заміщення барію на РЗЕ в твердому розчині для підвищення температури його переходу в надпровідний стан [21].
1.7 Формування монодоменної структури
Враховуючи розглянуті вище моделі між зернових меж, можна припустити, що для створення ВТНП з високим транспортним крітструмом найбільш вдалим є отримання текстурованих матеріалів. Спроби створення надпровідної кераміки з орієнтованою структурою (у вигляді пластин або прутків) засновані на традиційних заходах текстурування таких, як: 1) повільне охолодження в однорідному температурному полі (grad T=0); 2) повільне охолодження в градієнтному температурному полі (grad T>0) без переміщення зразку (метод Бріджмена); 3) градієнтна кристалізація з переміщенням гарячої зони (ZM (Zone-Melt)-метод зонного виплавлення, SOS (Seeded-Directional-Solidification)); 4) використання затравок (TSMG (Top-Seeded-Melt-Growth)-метод), а також нетрадиційних методів, наприклад 5) кристалізація вздовж концентраційного градієнта (CGMG (Consititutional-Gradient-Melt-Growth)-метод, GEORGE (Geometrically-Orgganized-Growth-Evaluation)-процес).
Створення штучних центрів утворення та росту 123 фази (“Seeding”) є діючим методом контролю зародкоутворення і засноване на введенні одиничних, відносно крупних “затравок” із РЗЕ–аналогів 123 фази, що мають більш високу температуру перитектичного розкладу. В якості останніх зазвичай використовують Sm-123 (Тпер≈1050оС) і Nd-123 (Тпер≈1080оС). Кристал затравки, як правило, поміщують на верхню частину щільної заготівки (пігулки або стержня) і приводять цикл плавлення – кристалізації з застосуванням температурного градієнта або рухом вздовж зразка високотемпературної зони. При цьому “затравка” з більш високою температурою плавлення ініціює утворення основної фази вздовж фронту кристалізації, що призводить до утворення гігантських псевдо монокристалічних доменів, фактично співставних з розміром самого зразка [7].
Цікаво, що орієнтація утворених псевдомонокристалів практично співпадає з орієнтацією кристалу вихідної затравки, що дозволяє легко контролювати направлення росту фази 123. Очевидно, це пов’язано з епітаксіальним характером процесу на гранях затравки, кристал який має близькі параметри елементарної корівки. Утворення доменів різної орієнтації свідчить, що реальний механізм носить більш складний характер [6]. Недавно запропонували покривати “неробочу” поверхню зразків, що кристалізуються з затравкою, сполуками, що утворюють з Yb 123, яка має більш низьку температуру перитектичного розплаву і попереджує кристалізацію на бокових сторонах пігулки [22]. В багатьох працях пропонується вводити в якості затравки монокристала магній оксид, стронцій титанат і т. і., проте із-за хімічної взаємодії розплаву з затравкою і утворення буферного шару продуктів реакції ефекту епітаксії не спостерігають, а ефективність введення затравки стрімко знижується [20,23].
Введення затравки безпосередньо в момент початку кристалізації розплаву при його охолодженні дозволяє отримувати крупнокристалічні зразки високої якості. Модифікацією цього прийому є також проведення ізотермічної кристалізації фази 123 після введення в гарячу зону затравочного кристалу (CUSP (Constant-Undercooling-Solidification-Processing)-метод) [20]. На жаль прийом введення багато чисельних орієнтованих затравок, анізотропно розпреділених в об’ємі зразка і необхідних для створення відповідної текстури ВТНП-матеріала, технічно, очевидно, достатньо складний і до цього часу втілений лише в одиничних працях, де багато чисельні затравки вводяться або в об’єм (CRT (Composite-Reaction-Texturing)-метод), або на поверхню зразка [20].
Проведення термомагнітного текстурування застосоване на ідеї використання атомів РЗЕ елементів, що володіють високим магнітним моментом (Gd, Dy, Ho). Ступінь магнітного текстурування зразків, отриманих навіть при звичайному спіканні, збільшується пропорційно величині прикладеного магнітного поля. Ефективність цього прийому стає ще більш помітною при кристалізації їх розплаву, досягаючи оптимуму [44] в полях вище 1 Тл.
Слід також згадати ряд оригінальних методів, в яких в якості рушійної сили кристалізації використовується градієнт концентрації РЗЕ в розплаві, що створюється за рахунок варіювання концентрації РЗЕ з різними температурами перитектичного розпаду. На думку деяких вчених – це може призвести до розробки технології отримування довгомірних текстурованих матеріалів, включаючи стрічки з покриттям із високо орієнтованої 123 фази.
1.8 Хімічне модифікування і створення ефективних центрів спінінга
В останні роки був розвинутий метод отримання ВТНП-матеріалів при зниженому парціальному тиску кисню (0.1-1 мол. % O2, OCMG, Oxygen-Controlled-Melt-Growth). Основна ідея методу полягає в тому, що йони РЗЕ, які володіють найбільшими радіусами (в тому числі і Nd, Sm, Eu, Gd) здатні утворювати тверді розчини типу R1+zBa2–zCu3O6+x .При кристалізації із розплаву, при пониженому парціальному тиску кисню ступінь заміщення барію суттєво зменшується і значно підвищується температура переходу в надпровідному стані [6] (до 95-96 К). Цю поведінку також пов’язують з можливим катіонним впорядкуванням в кристалічній гратці, в тому числі, з утворенням пар йонів неодиму в барієвих позиціях, що приводить до зменшення розупорядкування в кисневій підгратці. В той же час, в такій надпровідній матриці можуть існувати флуктації хімічного складу, що виступають як ефективні центри пінінга, оскільки при нульовому магнітному полі надпровідність у них стрімко подавляється, визиваючи пік-ефект [6].
Перевага створених таким чином центрів фіксації складається в тому, що на відміну від точкових дефектів хімічні модуляції структури вносять найбільш ефективний вклад в області відносно високих температур, які найбільше відповідають режиму експлуатації ВТНП-матеріалів (температура кипіння рідкого азоту). Саме з такими центрами пінінга, які не спостерігаються для Y 123, а основні переваги OCMG-метода, що дозволяє отримати СП-матеріали пов’язані з рекордними характеристиками [3,4].
В якості причин утворення подібних центрів пінінга, в різних моделях, розглядають: