10562 (684959), страница 2
Текст из файла (страница 2)
В развитии каскада патобиохимических и патофизиологических
процессов выделяют три основные этапа: индукции (запуск), амплификации (усиление повреждающего потенциала) и экспрессии (конечные реакции каскада) [20].
Этап индукции. Дефицит макроэргических субстратов в мозге приводит к «обесточиванию» Na+- K+ - АТФ-азной ферментной системы, которая управляет энергозависимым ионным транспортом. Нарушение активного ионного транспорта обусловливает пассивный отток К+ из клеток, приток Са2+, что приводит к деполяризации клеточных мембран. Внутриклеточное накопление ионов Са2+ при мозговой ишемии вызывает перегрузку митохондрий с разобщением окислительного фосфорилирования и усилением катаболических процессов; оно сопровождается переходом Са2+ в активную форму посредством соединения с внутриклеточным рецептором кальмодулином, что ведёт к активации кальмодулинзависимых протеинкиназ, липаз и эндонуклеаз, фрагментации дезоксирибонуклеиновых кислот (ДНК), гибели клетки [21].
Таким образом, уже на самых начальных этапах патобиохимического каскада, запущенного дефицитом макроэргов, начинается процесс внутриклеточного накопления кальция, являющийся одним из ключевых механизмов запуска как некротической, так и программированной смерти нейрона [21].
Важным путём поступления кальция в клетку являются агонистзависимые кальциевые каналы, особенно те, которые контролируются рецепторами, активирующимися возбуждающими аминоацидергическими медиаторами – глутаматом и аспартатом. Повышение их включает компенсаторные механизмы: обратный захват нейронами и астроцитами избытков из межклеточного пространства, пресинаптическое торможение выброса медиаторов, метаболическую утилизацию и др. Однако в условиях ишемии нарушается высокоселективная система транспорта глутамата и аспартата из синаптической щели в астроглию за счёт дисфункции каналов активного ионного транспорта и астроцитоза, изменяется система путей преобразования медиаторов; это приводит к тому, что абсолютная концентрация и время пребывания глутамата и аспартата в синаптической щели превышают допустимые пределы, и процесс деполяризации мембран нейронов приобретает необратимый характер [21].
Этап амплификации связан с продолжающимся увеличением внутриклеточной концентрации ионов кальция. Нарастание внутриклеточной концентрации кальция в сочетании с повышением содержания диацилглицерола (DAG) изменяет активность ферментов, модифицирующих мембранные белки, в том числе и глутаматные рецепторы. В результате увеличивается чувствительность нейронов к возбуждающим сигналам. Замыкается «порочный круг»: повышенная возбудимость может способствовать дальнейшему накоплению кальция и усилению выделения глутамата из нервных окончаний. Согласно экспериментальным данным, в областях мозга с плотно прилегающими нейронами, содержащими глутаматные рецепторы, одна массивно деполяризованная клетка индуцирует такое высвобождение глутамата, что возбуждает соседние нейроны. В результате вступает в силу «механизм домино» – последовательное распространение метаболических нарушений от нейрона к нейрону. Таким образом, события, происходящие на этапе амплификации, не только увеличивают накопление кальция, но и усугубляют токсичное возбуждение окружающих нейронов [21].
Этап амплификации создаёт условия для третьего этапа – экспрессии, на котором происходят необратимые изменения, приводящие к клеточной смерти. Механизмы, непосредственно повреждающие нейроны и глию, изучены наиболее полно [21].
Избыточное внутриклеточное накопление ионов Са2+ активирует внутриклеточные энзимы: липазы, протеазы, эндонуклеазы и запускает каскадный механизм ферментативных реакций, приводящих к катаболическому повреждению нейрона. Особенно разрушителен распад фосфолипидов в наружной клеточной мембране и в мембранах внутриклеточных органелл [21].
Таким образом‚ схема последовательных этапов «ишемического каскада» на основе причинно-следственных связей может иметь вид:
-
снижение мозгового кровотока;
-
глутаматная «эксайтотоксичность»;
-
внутриклеточное накопление ионов кальция;
-
активация внутриклеточных ферментов;
-
повышение синтеза оксида азота и развитие оксидантного стресса;
-
экспрессия генов раннего реагирования;
-
отдаленные последствия ишемии (реакции местного воспаления,
микрососудистые нарушения, повреждения гематоэнцефалического
барьера); -
апоптоз [45].
Ведущим патогенетическим механизмом ишемической смерти нейронов является избыточная активация глутаматных рецепторов. При этом происходящие в мозге эксайтотоксические процессы неразрывно связаны с параллельно протекающими реакциями образования оксида азота, свободнорадикального окисления, воспаления.
1.2. Свободнорадикальное окисление и антиоксидантная защита
при патологии головного мозга
Свободнорадикальное окисление (СРО) – важный и многогранный
биохимический процесс превращений кислорода, липидов, нуклеиновых
кислот, белков и других соединений под действием свободных радикалов (СР), а перекисное окисление липидов (ПОЛ) – одно из его последствий [16].
-
Свободнорадикальное окисление: общие сведения
Свободные радикалы представляют собой соединения, имеющие неспаренный электрон на наружной орбитали и обладающие высокой реакционной способностью. К числу первичных свободных радикалов относятся супероксидный анион-радикал, окись азота, а вторичными свободными радикалами являются гидроксильный радикал, синклетный кислород, перекись водорода, пероксинитрит. Образование свободных радикалов тесно связано, с одной стороны, с появлением свободных электронов при нарушениях процессов окисления в дыхательной цепи, превращении ксантина, синтезе лейкотриенов и простагландинов. Эти реакции зависят от активности ксантиноксидазы, дегидротатдегидрогеназы, альдегидоксидазы‚ холестериноксидазы, ферментов цитохрома Р-450. Синтез супероксид-аниона инициируется ангиотензином II, который образуется из ангиотензина I под действием ангиотензинпревращающего фермента [16].
Супероксид-анион может восстанавливать Fe3+ в Fe2+, при взаимодействии которого с перекисью водорода, перекисями липидов и гипохлоритом образуются высокотоксичные вторичные радикалы. Из всех свободных радикалов наибольшей активностью обладают гидроксильный радикал и пероксинитрит.
Активность свободных радикалов ограничивается антиоксидантами, которые разрывают цепи молекул при реакциях СРО, разрушают молекулы перекисей.
К числу ферментных антиоксидантов относятся супероксиддисмутаза (СОД), глютатионпероксидаза, каталаза, находящиеся в клеточных структурах. Неферментные антиоксиданты – витамины Е, К, С, убихиноны, триптофан, фенилаланин, церулоплазмин, трансферрин, гаптоглобин, глюкоза, каротиноиды – блокируют активность свободных радикалов в крови. Изменения структуры и функции субстратов, на которые действуют свободные радикалы, зависит, в конечном счете, от соотношения активности СР и антиоксидантов.
Свободнорадикальное окисление необходимо для нормального функционирования организма. Об этом свидетельствует, в частности, потребление более 5 % кислорода на образование супероксидного анион-радикала. СРО способствует уничтожению отживших клеток, элиминации ксенобиотиков, предупреждает злокачественную трансформацию клеток, моделирует энергетические процессы за счет активности дыхательной цепи в митохондриях, пролиферацию и дифференциацию клеток, транспорт ионов, участвует в регуляции проницаемости клеточных мембран, в разрушении поврежденных хромосом, в обеспечении действия инсулина. СРО генерирует внутриклеточные бактерицидные и вирусоцидные факторы, особенно в клеточном ядре [1, 22, 49].
Снижение поступления в нейроны молекулярного кислорода и повышение уровня восстановленности компонентов дыхательной цепи стимулируют восстановление кислорода по одноэлектронному пути с образованием свободных радикалов (супероксид-аниона, пероксильного и гидроксильного радикалов), а также оксидантов нерадикальной природы (пероксида водорода и аниона гипохлорита), поскольку (О2)- легко реагирует с промежуточными компонентами дыхательной цепи в восстановленном состоянии. Высокореакционноспособные радикалы кислорода вызывают окисление биомакромолекул, а также инициируют цепные процессы перекисного окисления мембранных липидах (ПОЛ), прямое окислительное повреждение нуклеиновых кислот (НК) и белков.
Образующееся в процессе ПОЛ гидроперекиси неустойчивы, их распад приводит к появлению разнообразных вторичных и конечных продуктов ПОЛ, представляющих собой высокотоксичные соединения (диеновые коньюгаты, шиффовы основания и др.), которые оказывают повреждающее действие на мембраны и клеточные структуры. Как следствие образуются сшивки биополимеров, определяются набуханием митохондрий и разобщение окислительного фосфорилирования, инактивация тиоловых ферментов, участвующих в дыхании и гликолизе, дальнейшее разрушение липидной основы мембран [21].
1.2.2. Продукты перекисного окисления липидов
К первичным продуктам ПОЛ относятся циклические эндоперекиси и алифатические моно- и гидроперекиси, так называемые липопероксиды и диеновые конъюгаты [30].
Диеновые конъюгаты (ДК) являются первичными продуктами ПОЛ. При свободнорадикальном окислении арахидоновой кислоты происходит отрыв водорода в α-положении по отношению к двойной связи, что приводит к перемещению этой двойной связи с образованием ДК [64]. Диеновые конъюгаты, являющиеся первичными продуктами ПОЛ, относятся к токсическим метаболитам, которые оказывают повреждающее действие на липопротеиды, белки, ферменты и нуклеиновые кислоты [54].
Липопероксиды являются весьма нестойкими и подвергаются дальнейшей окислительной дегенерации. При этом накапливаются вторичные продукты окисления, наиболее важными из которых являются ненасыщенные альдегиды (малоновый диальдегид). Продуктами взаимодействия малонового диальдегида с аминосодержащими соединениями являются шиффовы основания [30].
Шиффовы основания, органические соединения общей формулы RR¢C=NR¢¢ где R и R¢ - водород, алкил или арил, R¢¢ - алкил или арил (в последнем случае Ш. о. называют также анилами). Шиффовы основания – кристаллические или маслообразные вещества, нерастворимые в воде, растворимые в органических растворителях. Слабые основания, в безводной среде образуют соли с кислотами, в водных растворах кислот гидролизуются до амина и альдегида, в щелочных растворах большинство Ш. о. устойчиво. Гидрируются до вторичных аминов (RR¢CH - NHR¢¢), присоединяют многие соединения, содержащие подвижный водород, например b-дикарбонильные соединения, кетоны, имины. Образуются шиффовы основания в результате обратимой реакции между карбонильной группой альдегида или кетона со свободной аминогруппой [67]. Непрерывное накопление оснований Шиффа дестабилизирует мембраны и способствует деструкции клеток [54].
ТБК-реактанты (МДА) – вторичные продукты ПОЛ. Как известно, малоновый диальдегид (МДА) образуется только из жирных кислот с тремя и более двойными связями. МДА принадлежит важная роль в синтезе простагландинов, прогестерона и других стероидов [54]. Отрицательная роль малонового диальдегида заключается в том, что он сшивает молекулы липидов и понижает текучесть мембраны. Вследствие этого мембрана становится более хрупкой. Нарушаются процессы связанные с изменением поверхности мембраны: фагоцитоз, пиноцитоз, клеточная миграция и др. [54].
Гидроперекиси, ненасыщенные альдегиды, являются мутагенами и обладают выраженной цитотоксичностью. Они подавляют активность гликолиза и окислительного фосфорилирования, ингибируют синтез белка и нуклеиновых кислот, нарушают секрецию триглицеридов гепатоцитами, ингибируют различные мембранносвязанные ферменты [30].
Накопление в организме продуктов ПОЛ (диеновых коньюгатов, ТБК-реактантов, шиффовых оснований) [6] и развитие эндотоксикоза приводит к стимуляции монооксигеназной системы, изменениям реакции липидного, гормонального, иммунного, микроэлементного, нейромедиаторного статусов, числа мест связывания и сродства рецепторов к лигандам, истощению антиоксидантной системы [71].
-
Процессы свободно-радикального окисления липидов в развитии и течении острых нарушений мозгового кровообращения
В развитии и течении острых нарушений мозгового кровообращения е особое значение придается усилению процессов свободнорадикального окисления липидов. Прежде всего, по причине повышенной чувствительности головного мозга к действию свободных радикалов (50% сухого вещества мозга составляют ненасыщенные жирные кислоты – основной субстрат свободно-радикального окисления.) Хотя немалую роль играет и антиоксидантная система, наделенная функциями контроля за процессами перекисного окисления липидов, при недостаточности антиоксидантной системы процессы пероксидации усиливаются, происходит избыточное образование первичных (свободных перекисных радикалов и гидроперекисей липидов) и конечных (альдегидов и кетонов) продуктов свободнорадикального окисления. И те, и другие, действуя на внешние и внутренние клеточные мембраны, вызывают возникновение мембранной патологии и энергетического дефицита. Однако более опасными считаются свободные перекисные радикалы и гидроперекиси липидов, которые оказывают не только мембраноповреждающее действие, но и обеспечивают аутокаталитический характер перекисного окисления липидов [35].