105908 (683345), страница 2
Текст из файла (страница 2)
Музыкальное искусство, которое уже в первой половине XVII века начало широко пользоваться энгармонизмом, не могло удовлетвориться чистым строем, и он разделил участь пифагорова.
Итак, причиной, заставившей музыкальное искусство отказаться от чистого строя, было отсутствие в этом строе энгармонизма, иначе говоря, незамкнутость этого строя. Поэтому дальнейшая эволюция строев пошла по пути создания так называемых «темпераций»[6], т. е. таких математических строев, которые благодаря определенным частотным соотношениям между звуками являются замкнутыми. Так как музыкальное искусство не могло сразу отказаться от чистых квинт и чистых терций, преимущества которых перед терциями Пифагора были очевидны, то авторы темперации пытались разрешить задачу, исходя из чистых больших и малых терций и чистых квинт.
Равномерные темперации
§ 1. Попытки разрешить проблему строя, пригодного для музыкальных целей, посредством неравномерных темперации, окончились неудачей, так как эти темперации давали возможность пользоваться ограниченным количеством тональностей (в отдельных тональностях появлялись так называемые «воющие» интервалы). Но эти попытки, особенно работы Веркмейстера и Нейдгардта, наметили правильный путь разрешения проблемы и привели позднейших исследователей к двенадцатизвуковому равномерно-темперированному строю. Авторы этого строя исходили из следующих соображений. Если разделить пифагорову комму (1/9 тона) на 12 равных частей, т. е. распределить ее между двенадцатью квинтами этого строя, то каждая квинта уменьшится на 1/108 тона (1/9:12=1/108). При этом условии двенадцатая квинта вверх от звука с (his) совпадает с октавой от того же звука (с1), а двенадцатая квинта вниз от звука с1 (deses) совпадает с октавой от того же звука (с). Совпадение his с с1, a deses с с вызовет совпадение всех энгармонически равных звуков, отличающихся по высоте на пифагорову комму. Это совпадение произойдет путем смещения обоих звуков.
Так как в пифагоровом строе все целые тоны получаются посредством двух квинтовых ходов и потому равны между собой, и так как последовательность 6 целых тонов (например, от звука с) приводит к звуку his, который на 1/9 тона выше с, то, уменьшая ч. квинты на 1/108 тона, мы уменьшаем каждый целый тон на 1/54, а последовательность 6 тонов на 1/9 тона (пифагорову комму). Таким образом, в рассматриваемом нами темперированном строе октава состоит из 6 равных целых тонов.
Так как в пифагоровом строе хроматический полутон больше диатонического, то целый тон пифагорова строя делится на два неравных полутона. В рассматриваемом нами темперированном строе хроматический полутон равен диатоническому.
Поэтому в этом строе целый тон делится на два равных полутона. Таким образом, в этом строе октава состоит из 12 равных полутонов, а все другие интервалы из меньшего количества этих полутонов - от 11 (б. септима - ув. сексте) до 1 (м. секунда).
Исследуем теперь вопрос о музыкальной приемлемости интервалов 12-звукового равномернотемперированного строя. Так как названный строй получается путем деления ч. октавы на 12 равных полутонов, то все октавы этого строя, как и в прочих теоретических строях, чистые[7]. Темперированная квинта, которая меньше чистой на 1/108 тона, и темперированная кварта, которая больше чистой на 1/108 тона, по своим звуковым качествам почти не отличаются от чистых.
Темперированная б. терция меньше пифагоровой на 1/27 тона и, следовательно, больше чистой на 1/16 тона; наоборот, темперированная м. секста, являющаяся обращением б. терции, больше пифагоровой на 1/27 тона и меньше чистой на 1/16 тона.
Темперированная м. терция больше пифагоровой на 1/36 тона и, следовательно, меньше чистой на 1/14 тона; наоборот, темперированная б. секста, являющаяся обращением м. терции, меньше пифагоровой на 1/36 тона и больше чистой на 1/14 тона.
Итак, темперированная б. терция больше чистой на 1/16 тона, а темперированная м. терция меньше чистой на 1/14 тона. Эти терции по своим звуковым качествам заметно отличаются от чистых, но в музыкальном отношении приемлемы. То же самое можно сказать и относительно обращения терций - секст. Что же касается диссонирующих интервалов, то эти интервалы, сохраняющие свои звуковые качества в более широких границах, чем консонирующие, в темперированном строе не вызывают никаких протестов со стороны музыкального слуха. Таким образом, все интервалы изучаемого нами равномернотемперированного строя в музыкальном отношении приемлемы. Настройка хроматической гаммы 12-звукового равномернотемперированного строя представляет некоторые трудности. Так как все интервалы этого строя можно получить посредством квинтовых ходов, то теоретически вопрос сводится к нахождению числа биений в секунду, которое дает темперированная квинта на различных ступенях хроматической гаммы изучаемого строя, практически - к отсчету указанных биений.
Первая часть вопроса разрешается следующим образом.
Если мы обозначим через х величину, показывающую, во сколько раз число колебаний верхнего звука темперированного полутона больше числа колебаний его нижнего звука, принятого за 1, то x12 будет величиной, показывающей, во сколько раз число колебаний верхнего звука октавы больше числа колебаний ее нижнего звука, принятого за 1. Так как число колебаний верхнего звука октавы больше числа колебаний ее нижнего звука в два раза, то мы можем составить следующее уравнение:
1: x12 = 1 : 2
х12 = 2 или х= 21/12 = 1,0595.
Зная интервальный коэфициент темперированного полутона и число полутонов, заключающихся в интервалах темперированного строя, можно найти интервальные коэфициенты этих интервалов, а зная последние и считая, что звуку а1 соответствует 440 гц, можно найти числа колебаний для всех звуков темперированной хроматической гаммы от с1 до с2.
Известно, что при гармоническом воспроизведении ч. квинты 3-й частичный тон ее нижнего звука образует тон совпадения со 2-м частичным тоном ее верхнего звука. В темперированной квинте указанные частичные тоны не совпадают, и между ними возникают биения. Для квинты с1- g1 число биений в секунду равно 0, 89, так как число колебаний 3-го частичного тона звука с1 есть 784,89[8], число колебаний 2-го частичного тона звука gl есть 784[9]. Число биений в секунду для квинты es - b1 равно 1,07, так как число колебаний 3-го частичного тона звука es1 есть 933,39[10], а число колебаний 2-го частичного тона звука b1 есть 932,32[11]. По тем соображениям число биений в секунду для квинты fis1 - сis2 равно 1,25, а для квинты а1 - е2 равно 1,48. Из всего только что изложенного видно, что для настройки темперированных квинт необходимо найти числа биений для всех 12 квинт. Однако практика настройки музыкальных инструментов с фиксированной частотой звуков показывает, что эти тонкости излишни и что для всех 12 квинт можно взять среднее число биений, т. е. для квинт 1-й октавы 1,1[12]. Эта замена значительно упрощает процесс настройки темперированных квинт, хотя и вызывает некоторое (совершенно незаметное для слуха) расхождение между вычисленными интервалами 12-звукового равномерно-темперированного строя и фактически настраиваемыми. Установив число биений для квинт в 1-й октаве музыкальных инструментов с фиксированной частотой звуков (например, фортепиано), изложим метод настройки. Процесс настройки начинается с настройки а1 по камертону (440 гц). После настройки а1 настраивают все остальные звуки 1-й октавы. Расмотрим один из способов настройки:
Поясним схему: квинты a1 - е2 и d1 - a1 настраиваются сначала как чистые, так как 1,1 биения в секунду можно получить как при некотором уменьшении квинты, так и при некотором ее увеличении. Затем е2 понижается (-), пока квинта а1 - е2 не даст 1,1 биения в секунду, a d1 повышается (+), пока квинта dl - а1 не даст 1,1 биения в секунду. Затем от е2 делается ход на чистую октаву в el, a от dl - аналогичный ход в d2. Эти ходы на октаву имеют целью заставить нас настраивать квинты только в пределах 1-й октавы, для которых число биений в секунду = 1,1[13].
Дальнейшая настройка квинт происходит аналогичным образом, до тех пор пока с одной стороны мы дойдем до звука dis2 (es2) с другой - до звука esl (dis1). Если эти звуки дадут ч. октаву, то настройка произведена правильно, если - нечистую октаву, то настройку необходимо проверить. Проверка настройки производится не только в отношении квинт и октав, но и в отношении мажорных и минорных трезвучий и их обращений (конечно, в отношении их звуковых качеств, а не отсчета биений, что в отношении терций затруднительно). Настройка остальных звуков фортепиано не представляет особых трудностей, так как они настраиваются по октавам вверх и вниз от полученных нами 12 звуков 1-й октавы. Профессиональные настройщики обычно не отсчитывают биений, а настраивают темперированные квинты на слух. Этот метод настройки более быстрый, но менее точный.
Сравнительно со строями пифагоровым и чистым, а также с неравномерными темперациями, упомянутыми нами ранее, 12-звуковой равномерно-темперированный строй в музыкальном отношении является строем весьма совершенным:
1) он представляет собой строй замкнутый и энгармонический;
2) он состоит из интервалов, которые как при мелодическом, так и при гармоническом их воспроизведении вполне приемлемы для музыкального слуха;
3)он имеет в октаве только двенадцать звуков, могущих, однако, выполнить несколько ладовых функций;
4) он требует сравнительно простого устройства многоголосных инструментов.
Все перечисленные свойства 12-звукового равномерно-темперированного строя делают возможности этого строя в музыкальном отношении почти неограниченными. И. С. Бах в «Das Wohltemperierte Klavier» впервые показал на практике все музыкальные возможности этого строя.
§ 2. Двенадцатизвуковой равномерно-темперированный строй лежит в основе европейской музыки со времени И. С. Баха. Однако целый ряд музыкальных ученых и музыкантов не считает его вполне удовлетворительным. Неоднократно делались шаги к расширению этого строя, которые преследовали главным образом две цели:
1) улучшение звуковых качеств гармонических терций и секст, т. е. приближение их к натуральным (4:5, 5:6, 3:5 и 5 : 8),
2) введение в музыкальное искусство интервалов натурального звукоряда, выражающихся отношениями с участием множителей 7, 11, 13, 17, 19, 23, 31 и т. д.
Первую цель следует рассматривать как попытку вернуть музыкальное искусство к чистому строю, вторую - как попытку обогатить музыкальное искусство новыми интервалами натурального звукоряда (7/4, 11/8, 13/8, 19/16, 24/23, 32/31 и т. д.) и их производными.
Трудно что-нибудь возразить против улучшения звуковых качеств терций и секст, что же касается введения в музыку новых интервалов натурального звукоряда, то на этом вопросе следует остановиться.
На стр. 8 было указано, что высоте звука соответствует не одна определенная частота, а некоторая полоса частот, и что названия интервалов сохраняются при различных, но близких по величине интервальных коэффициентов.
Таким образом, «натуральные» м. септима 7/4, которая меньше м. септимы 12-звукового строя 210 на 1/7[14] тона, незначительно отличается по своим звуковым качествам от последней, м. терция 19/16, которая меньше м. терции 12-звукового строя 24/12 на 1/68 тона, совершенно не отличается от последней.
Интервал 11/8, который больше кварты 12-звукового строя 25/12 на 1/4 тона и меньше ув. кварты 26/12 на 1/4 тона, резко отличается от обоих; интервал 13/8, который больше м. сексты 12-звукового строя 28/12 на 1/5 тона и меньше б. сексты 12-звукового строя 29/12 на 3/10, резко отличается от обоих.
Таким образом введение в музыкальную практику новых интервалов натурального звукоряда не дает заметного эффекта. Этот эффект должен наблюдаться лишь в тех случаях, когда вводимые интервалы резко отличаются от интервалов 12-звукового равномерно-темперированного строя (например, 11/8 и 13/8). Однако, исследования показывают, что и в этом случае мы не воспринимаем новых интервалов, а воспринимаем частотные интонации или предыдущего или последующего интервала (11/8 - или ч. кварта или ув. кварта). Эффект, получаемый от введения в музыкальную практику таких интервалов, как 7/4 и 19/16, - ничтожен, так как интервал 19/16 совершенно не отличается от соответствующих интервалов 12-звукового строя, 7/4 - отличается от них незначительно.
Среди равномерных темперации, в которых октава делится на большее количество частей, чем 12, можно назвать прежде всего 24-звуковой равномерно-темперированный строй. Этот строй, сохраняющий все особенности 12-звукового равномерно-темперированного строя, дает возможность осуществить с большой точностью интервалы, коэфициенты которых заключают в себе числа 11 и 13. Улучшение терций и секст (сравнительно с 12-звуковой темперацией) в рассматриваемой темперации не наблюдается.















