diplom (682974), страница 3
Текст из файла (страница 3)
Ванна А содержит модули СИФУ и модули контура тока.
Ванна В состоит из модулей контура скорости.
Ванна С содержит модули для обработки сигналов с технологических датчиков.
2.4.2 Описание элементов системы автоматического
регулирования
Якорь двигателя питается от двух групп тиристорного преобразователя. Система регулирования осуществляет скоростную регулировку и регулировку положения и выполнены по принципу подчиненного регулирования, т. е. параметр тока подчинен параметру скорости.
Действительное значение скорости снимается с тахогенератора Е1 и через преобразователь 5 подается в виде сигнала обратной связи w на один из входов регулятора скорости 4.
Действительное значение положения ножей определяется сельсином-датчиком Y1, один оборот которого соответствует одному обороту ножниц.
Значение скорости предыдущей клети обрабатывается в центральном цифровом технологическом регуляторе (ЦТЦР) 10 и через частотно-аналоговый преобразователь 11 и задатчик интенсивности 12 подается на вход регулятора скорости 4 в виде требуемой величины скорости —w*. На входах регулятора скорости задание w* сравнивается с сигналом обратной связи по скорости таким образом, что Rw управляется алгебраической суммой сигналов w* и w. Выход регулятора скорости является заданием для регулятора тока 2 (Riк) ведущего и ведомого приводов. Задание тока перед Riк преобразуется задатчиком интенсивности тока 3.
Кроме задания тока, схема регулирования ведущего привода формирует блокирующие сигналы для ведомого привода: Ф — запрещение работы привода и S`0 — требование ограничения тока якоря до 10% Iн. На входах регулятора тока сравнивается требуемая величина тока якоря i*КА, i*КВ с сигналом обратной связи по току — iKA, iKB.
Под действием алгебраической суммы этих сигналов регуляторы тока формируют управляющие сигналы для генератора импульсов GI — и
Сигналыи преобразуются генератором импульсов в импульсы управления тиристорами и
При выставлении ножей в исходное положение в работу включаются следующие блоки: блок 9 отменяет команду «старт» в ЦТЦРе. После отмены команды «старт» логика блока 18 блокирует тракт задания скорости сигналом . Направление вращения при доводке ножей в исходное положение и их скорость определяются блоками 6,7,8.
После достижения исходного (верхнего) положения ножей появляются сигналы: S0 — из блока управления положением 7, I0 — из датчика нулевого тока 15, 0 — из логического блока управления скоростью 13. Под действием этих сигналов блок ограничения тока 16 и 19 формирует команды на ограничение тока до 10% Iн в ведущем и ведомом приводах. Привод подготовлен к новому «старту».
Блок аварийной логики LOG при появлении сигналов:
а) сверхток преобразователя — IKM;
б) потеря напряжения синхронизации — U0;
в) превышение максимальной скорости M;
г) превышение максимального значения задания скорости M;
д) авария в системе УНИСТОР—Y2-50, блокирует регулятор тока, чем вызывает режим искусственного инвертора преобразователя и отключает преобразователь от питающей сети.
2.5 Выбор аппаратуры защиты и коммутации
Таблица 1 –Уставки защиты
Название | Уставка | Численное | Тип аппарата |
Максимальная токовая защита | 1,25 Iном.дв | 4375А | Электронная |
Максимальная токовая защита ВАБом | 2,2 Iном.дв | 7700А | ВАБ |
Токовая отсечка | 2,5 Iном.дв | 8750А | Электронная (САР) |
Защита от обрыва поля | 16А | 15,7/11А | РЭВ821 |
Защита от превышения оборотов | 1,1 nном 1,25 nном | 395 об/мин 450 об/мин | Электронная Центробежный выключатель |
2.6 Описание схемы управления, защиты и сигнализации
Назначение отдельных элементов схемы управления.
В1-50 – включает и отключает схему управления.
В2-50 – переводит схему управления из режима «Подготовка» в режим «Работа».
В3-50 – фиксирует, что привод выведен из исходного состояния (наличие сигнала задания или обратной связи).
В4-50 – регистрирует сигнал о повреждении и отключает преобразователь: немедленно в режиме «Подготовка» и с выдержкой времени в режиме «Работа».
В5-50 – регистрирует сигнал аварии.
В6-50 – реле времени, отключающее систему управления (реле В1-50) при повреждение в режиме «Работа».
Различают следующие виды шин:
Р/Р – подача сигнала о повреждении на вход Y 1-50;
Н/Н – подача сигнала об аварии на вход Y 2-50;
Р/Н \
О/Н – шины, переключаемые при помощи контактов реле В2-50.
Н/О /
Подготовка привода к работе
Для включения тиристорного преобразователя необходимо включить «автоматы цепей возбуждения двигателей Р4 и Р5 на щите 7в254, автоматы цепей управления Р1, Р2, Р7 на щите 7в252, автоматы Р1, Р1-8, Р2-8 для собственный нужд шкафов «Унистор» и автомата А2 в цепи управления ВАБов.
При включении тиристорного преобразователя со щита дистанционного управления (ШДУ) ключом КУ в схеме управления и сигнализации замыкается контакт В20, который включает В1-50. Замыкающий контакт реле В1-50 подает напряжение на сборные шины +5 и Zv1.
Включение ВАБов производится оператором с поста управления ПУ-5
ключом АН21.
С этого же поста осуществляется выбор режима работы ножниц. Толчковый или рабочий режим оператор выбирает ключом АН27.
Выбором режима работы заканчивается процесс подготовки привода ножниц к работе.
Отключение привода ножниц.
Отключение привода ножниц может быть осуществлено обслуживающим персоналом и аварийно в результате срабатывания защиты.
При отключении со ШДУ ключом КУ размыкаются контакт реле В21 – теряет питание реле В1-50, в результате чего снимается напряжение с шины +2 в узле релейного управления СО1.
Аналогично происходит отключение кнопкой В2-51 на шкафу «Унистор В». При отключении привода с поста управления ПУ-5 ключом АН21 получает питание реле В31, размыкающий контакт которого в цепи реле В30 вызывает отключение ВАБов.
На световом табло НD9К52 загорается лампочка сигнализирующая об отключении ВАБов.
Защита привода ножниц
При работе привода часть аварийных сигналов поступает на аварийно-отказные шины, которые обеспечивают отключение привода мгновенно или с выдержкой времени. Характер отключения зависит от режима работы привода («подготовка» или «работа») и от вида срабатывающей защиты.
Защита трансформатора
Трансформатор имеет две ступени защиты от повреждения. Защита первой ступени вступает в действие при срабатывании газовой и тепловой защит.
При этом в схеме управления приводом включается реле В40, через замыкающие контакты которого включается лампочка Н7 на световой панели HDS-1 шкафа «Унистор В», и через промежуточное реле В64 посылается сигнал на ЩДУ о комплексном повреждение первой ступени.
Защита второй ступени вступает в действие при аварийном срабатывании газовой или тепловой защит.
При этом в схеме управления приводом включается реле В41, через замыкающий контакт которого подается напряжение 48В на шину Н/Н.
От перенапряжения трансформатор защищен разрядником Р1.
Защита тиристорного преобразователя
Защита ТП от перенапряжения осуществляется разрядниками Р2, Р3 и блоками защит PGU, кроме того каждый тиристор защищен от перенапряжения RC цепочкой.
При срабатывании защиты от перенапряжения на блоках PGU через контакты реле В3,В1 подается напряжение 48В на шину Р/Н. На световой панели HDS-1 загорается лампочка Н1, сигнализирующая о перенапряжении в цепи ТП.
Защита двигателя
Максимальная токовая защита осуществляется системой регулирования и ВАБом. При превышении тока якоря уставки максимального расцепителя ВАБа происходит отключение. Через замыкающие контакты №2, №3 в схеме управления приводом отключается реле В8.
В схеме управления и сигнализации напряжение 48В через замкнутые контакты В8 и В23 поступают на шину Н/Н – отключается реле Y2-50 и загорается лампочка Н2 на световой панели HDS-1.
Защита двигателя от превышения допустимой скорости осуществляется с помощью центробежного выключателя К1 и системой регулирования. При срабатывании центробежного выключателя его контакт включает реле В2-3 в узле ВО2 и происходит отключение.
При нетрогании двигателя в схеме регулирования срабатывает реле В1-38, которое через промежуточное реле В51 в схеме управления приводом отключает ВАБы аналогично отключению при перенапряжении в цепи якоря, одновременно в блоке аварийной логики отключается реле В1-5, замыкающие контакты которого падают напряжение 48В на шину Н/Н.
При потере возбуждения или при перенапряжении в цепи якоря двигателей получает питание реле В32, размыкающий контакт которого вызывает отключение ВАБов.
На световых панелях HDS-1 загорается лампочка Н6.
При срабатывании тепловой защиты двигателей в схеме управления приводом получает питание реле В34, а размыкающий отключает реле времени ВС2.
Размыкающие контакты реле В34 блокируют включение толчковой подачи (через контакт реле В84), блокируют работу ножниц от ЦТЦРа и снимают напряжение с реле В1-6 в узле СО1, и включается узел регулирования – ножи возвращаются в исходное положение.
По истечению выдержки времени от реле ВС2 происходит отключение привода ножниц, аналогичное отключению с поста ПУ-5 ключом АН21.
Отключение вентиляции двигателей вызывает отключения привода ножниц, аналогичное срабатыванию тепловой защиты, только реле В33 получает питание с выдержкой времени от реле ВС1.
2.7 Возможные перспективы развития электропривода машины на базе достижения науки и техники
Релейно-контактные схемы (РКС) получили самое широкое распространение в автоматизированном электроприводе несколько десятков лет назад и, с различными дополнениями и усовершенствованиями, эксплуатируются до настоящего времени. Наряду с такими достоинствами, как наглядность и простота в обслуживании, они имеют несколько существенных недостатков:
-
громоздкость;
-
невысокая надежность из-за быстрого износа контактов, особенно при частых включениях, и выхода из строя коммутирующей аппаратуры, а также связанная с этим необходимость содержать большой по численности оперативный и ремонтный персонал;
-
повышенное энергопотребление.
Наличие данных факторов вызывает необходимость искать пути замены РКС на новое, более совершенное оборудование, лишенное вышеперечисленных недостатков. Одним из таких устройств являются управляющие системы, построенные на базе микропроцессоров — программируемых контроллеров.
В современном автоматизированном электроприводе получают широкое применение программируемые микроконтроллеры (ПК), представляющие собой специализированные управляющие микроЭВМ, работающие в реальном масштабе времени по определенным рабочим программам, размещаемым в ПЗУ. По данным, приведенным в /3/, в мире выпускается свыше 150 типов ПК. Они используются примерно в 35% систем автоматизации технологических процессов и в большинстве случаев реализуют законы программно-логического управления или аналого-цифрового регулирования. Различают ПК трех типов:
-
программируемые логические контроллеры (ПЛК), ориентированные на реализацию алгоритмов логического управления, обеспечивающих замену релейных и бесконтактных схем электроавтоматики;
-
программируемые регулирующие микроконтроллеры, или ремиконты, ориентированные на реализацию алгоритмов автоматического регулирования аналоговых и аналого-дискретных технологических процессов, заменяющие различные аналоговые и цифровые регуляторы;
-
микроконтроллеры, ориентированные на реализацию специальных алгоритмов управления контрольно-измерительной аппаратурой, бытовыми приборами, светофорами, транспортными механизмами и др.
Программируемые логические контроллеры осуществляют реализацию систем булевых функций в реальном масштабе времени и представляют собой програмнонастраиваемую модель цифрового управляющего автомата, ориентированного на определенную область применения.
2.8 Специальный вопрос
Возможно произвести перевод релейно-контактной части электропривода летучих ножниц 130 тонн стана "450" ЗСМК на микропроцессорное управление.