tit (682970), страница 4
Текст из файла (страница 4)
разрядов, 1/см • с 40...100
Длительность обработки (в зависимости от задаваемой шероховатости), мин 2...30
Потребляемая мощность (в зависимости от размеров валка), кВт 20...200
Габаритные размеры, м 4х3х3
Большое число электрических разрядов с высокой плотностью на единицу поверхности, случайный характер зарождения и постоянно меняющееся во времени распределение разрядов по поверхности, возможность легирования поверхностного слоя различными элементами в процессе воздействия на поверхность плазмы электрических разрядов - все это обеспечивает комплекс положительных свойств поверхностного слоя, который весьма затруднительно получить другими способами и устройствами.
Характеристики поверхностного слоя обработанных прокатных валков
Твердость, ГПа 11...12 Толщина слоя, мкм 150...250 Интервал задаваемой шероховатости, мкм 1...10 Изотропность шероховатости 0,9... 1,0
Число пиков на единицу длины базы профиля 80... 300
По структуре микрорельеф поверхности представляет собой равномерно распределенные выступы в виде наплавленных капель металла. В этом принципиальное отличие микрорельефа от получаемого другими способами, в результате которых на поверхности создаются впадины. При данном способе обработки в сравнении с известными существенно выше число пиков на единицу длины базы обрабатываемого профиля.
2. Образование покрытий на поверхности активного анода
Образование на поверхности активного анода неметаллических образований отмечалось в большинстве работ, посвящённых данному способу обработки. При этом характер образований был различным.
Так, при молибденировании армко-железа и стали 45 на поверхности образовывалась рыхлая "шуба", причём её толщина зависела от состава электролита. В то же время при вольфрамировании на поверхности могли образовываться как толстые рыхлые слои, так и тонкие плотные плёнки, отделение которых от поверхности было весьма затруднительным. При азотировании технического железа в водном растворе 15% N11401 + 5% Н40Н поверхностный слой содержал 66% чистого железа, в то время как на стали 45 после обработки содержание железа было 48%. В слое обнаружены окислы РеО, Ре20з, Рез04, для технического железа в большом количестве были нитриды Ре2М и Рез1^. На стали 45 в малом количестве присутствовал нитрид Ре2К.
Анализ поверхности металла, проведённый после снятия поверхностного слоя, показал наличие феррита (а-Ре), аустенита (у-Ре], смеси нитридов РезN4 и Ре4М^, а также некоторого количества оксидов РеО, Ре20з и Рез04. Предполагалось, что это может быть вызвано как неполным снятием поверхностного слоя, так и образованием в диффузионной зоне дисперсных включений.
При науглероживании таких же образцов в электролите, состоящем из 15% хлористого аммония + 10% ацетона, в поверхностном слое технического железа было обнаружено 83% чистого железа, а на стали 45 - 71%. В слое присутсвовали также оксиды РеО, Ре20з и Рез04, а на поверхности железа ещё и незначительное количество графита.
Поверхностный слой после вольфрамирования содержал 19% железа, до 48% вольфрама, окислы Ж)2, \УОз, РеО и Рез04, кроме того, соединения \УС, Ре2^ и РезС. На поверхности обработанных образцов обнаружены следы сложных оксидов вольфрама и около 5% чистого вольфрама.
На основании результатов рентгенодифрактометрического фазового анализа был сделан вывод об изменении тонкой кристаллической структуры технического железа.
После молибденирования поверхностный слой ("шуба") представлял собой смесь оксидов РеО, Ре20з, Рез04, феррита (9...11%) и чистого молибдена (18%). На поверхности металла были обнаружены феррит, незначительное количество окислов Ре20з и Рез04 и около 2% чистого молибдена.
При комплексном насыщении стальных образцов молибденом и ванадием в поверхностном слое в большом количестве содержались оксиды У02, У204, МоОз, Мо02,8, РеУ204, РеУ205, РеУ04, РеМо04, а также малое количество РеО и Ре20з. Обнаружено небольшое количество ванадия и молибдена (их соотношение приблизительно 3:1).
При азотировании титанового сплава ВТ1-0 поверхностный слой содержал а-Т1, смесь окислов титана, нитрид Т1К С ростом длительности обработки увеличивалось количество нитридов при одновременном уменьшении содержания окислов.
У науглероженных образцов при различных напряжениях состав поверхностных слоев в качественном отношении был одинаков: а-Т1, оксиды титана, карбид и карбоксид титана. Повышение напряжения сопровождалось увеличением окисления поверхностных слоев, что дало основание сделать предположение о стабилизирующей роли окисной плёнки при данных условиях обработки.
Таким образом, в состав слоя, образующегося на поверхности анода при нагреве последнего в электролите, входят оксиды обрабатываемого металла и элементов, входящих в состав электролита. Содержание относительно большого количества железа, вольфрама, молибдена и в меньшей степени ванадия свидетельствовало об активных восстановительных процессах в парогазовом слое. Однако причиной этого является, по-видимому, наличие в этом слое значительного количества водорода (и окиси углерода при науглероживании), а не высокая напряжённость поля и большая температура нагрева анода.
Процессы восстановления окислов железа водородом и окисью углерода достаточно хорошо изучены, а восстановление водородом окислов молибдена и вольфрама - это основной метод получения этих металлов в промышленности.
Образование покрытия на поверхности может происходить и в результате взаимодействия металла с азотом парогазового слоя. Так, при обработке стали 40Х в электролите, содержащем 10% N11401 и 5% N114011, на поверхности образовался нитридный слой толщиной 20...40 мкм. Над ним наблюдался слой окислов толщиной 4...5 мкм.
Коррозионные испытания в растворе 0,1 N Nа2504 показали, что скорость коррозии азотированной стали в 3 раза меньше, чем необработанной. Промежуточные результаты были получены для азотированной стали С удалённым окисным слоем. Коррозия обработанной стали проходила неравномерно в виде пятен и точек. Это объясняли и наличием пор в слое нитридов, и проникновением продуктов растворения железа через поры на поверхность. На высокие защитные свойства многофазного покрытия, полученного при азотировании стали 45.