105221 (682896), страница 2

Файл №682896 105221 (Полупроводниковые материалы в металлургии) 2 страница105221 (682896) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Высокую степень чистоты полупроводниковых материалов получают возгонкой или сублимацией. Этот метод основан на способности некоторых твёрдых веществ переходить в парообразное состояние, минуя жидкую фазу, а затем в обратном порядке переходить из парообразного в твёрдое состояние, образуя твёрдый продукт – сублимат. Такими свойствами обладают некоторые полупроводники. Возможность возгонки определяется упругостью паров примесей или чистого вещества при данной температуре. Полупроводниковые материалы обладают довольно высокой упругостью паров, что даёт возможность производить возгонку при относительно низких температурах и небольшом вакууме. Сублимат осаждается на стенках вертикально установленного конденсатора, причём наиболее летучие примеси оседают в верхней зоне, наименее летучие – внизу, а труднолетучие остаются в остатке. В результате повторной возгонки получают более чистый продукт.

Различные методы очистки полупроводников дают возможность получать продукт требуемой чистоты. Так, например, зонной плавкой загрязнённого германия удаётся снизить число атомов примеси в нём до одного на 10 атомов германия.

2.Металлургия германия и кремния

Германий принадлежит к редким рассеянным в природе элементам. Запасы его в земной коре составляют 7·10 %. Атомный вес германия 72,6, температура плавления 958,5°С. производят его из отходов цинкового производства, пыли, получаемой при сжигании углей, германиевых концентратов, извлекаемых из медно-свинцово-цинковых сульфидных руд и содержащей германий пыли, улавливаемой при медной плавке. Технология получения германия осуществляется путём превращения двуокиси в тетрахлорид германия, очистки последнего и превращения тетрахлорида в двуокись с последующим восстановлением двуокиси. Эти процессы можно представить уравнениями реакций:

GeO2+4HCl↔GeCl4+2H2O.

При концентрации HCl>6n реакция сдвинута вправо; при меньшей концентрации – реакция протекает справа налево.

Температура кипения полученного тетрахлорида германия 83ºC. Так как вместе с ним в сконденсированной жидкости имеются и другие соединения, то его подвергают ректификации. После этого тетрахлорид германия переводят в двуокись по уравнению

GeCl4+(x+2)H2O=GeO2xH2O+4HCl.

Полученную чистую двуокись германия восстанавливают в трубчатой электрической печи водородом. Восстановление протекает по реакции

GeO2+2H2=Ge+2H2O,

При температуре 600°C, в течение 20-50 мин, после чего лодочка с восстановленным германием передвигается в зону более высоких температур и при 1000-1100°C происходит сплавление.

Кремний – широко распространённый элемент в природе. В земной коре его 27.6%. атомный вес кремния 28.06. температура плавления 1415°C, температура кипения около 2600°C. Технология получения его отличается от технологии получения германия. Исходное сырьё в виде двуокиси кремния широко распространено в природе. Из кремнезёма в дуговых электрических печах путём восстановления его углеродом кокса получают кремний чистотой до 97%. Восстановление протекает по уравнению

SiO2+2C=Si+2CO.

Путём хлорирования технического кремния получают тетрахлорид кремния. Старейшим методом разложения тетрахлорида кремния является метод выдающегося русского химика академика Н.Н.Бекетова. Метод этот можно представить уравнением:

SiCl4+Zn=Si+2ZnCl2.

Здесь пары тетрахлорида кремния, кипящего при температуре 57,6°C, взаимодействуют с парами цинка.

В настоящее время тетрахлорид кремния восстанавливают водородом. Реакция протекает по уравнению:

SiCl4+2Н2=Si+4НCl.

Кремний получается в порошкообразном виде. Применяют и йодидный способ получения кремния, аналогичный описанному ранее йодидному методу получения чистого титана.

Чтобы получить чистыми германий и кремний, их очищают от примесей зонной плавкой аналогично тому, как получают чистый титан.

Для целого ряда полупроводниковых приборов предпочтительны полупроводниковые материалы, получаемые в виде монокристаллов, так как в поликристаллическом материале имеют место неконтролируемые изменения электрических свойств.

При вращении монокристаллов пользуются методом Чохральского, заключающимся в следующем: в расплавленный материал опускают стержень, на конце которого имеется кристалл данного материала; он служит зародышем будущего монокристалла. Стержень вытягивают из расплава с небольшой скоростью до 1-2 мм/мин. В результате постепенно выращивают монокристалл нужного размера. Из него вырезают пластинки, используемые в полупроводниковых приборах.

Маркировку германия и кремния производят по буквенно-цифровой системе. Германий электронный, легированный сурьмой, обозначают ГЭЛС. За буквами цифры указывают удельное сопротивление ом·см (ом·м), а если их две группы, как, например, 0,3/0,2, то первые (0,3) означают удельное сопротивление, а вторые (0,2) – диффузионную длину неосновного носителя тока, мм. Кремний монокристаллический дырочный маркируют КМ-2, где цифра показывает удельное сопротивление ом·см; кремний монокристаллический электронный маркируют КМЭ-2.

3.Применение полупроводников

3.1.Тепловые сопротивления (термисторы)

Изменение электропроводности полупроводников под влиянием температуры позволило применять их в приборах, работа которых основана на использовании этого свойства. Полупроводники используют в качестве термометров для замера температур окружающей среды. Они более чувствительны, чем термометры сопротивления, изготовляемые из металла под названием болометров и применяемые в лабораторной практике для измерения очень высоких или самых низких температур. О температуре судят, замеряя электрическое сопротивление болометра. Но точность измерения с помощью этих приборов невелика, так как металлы изменяют своё сопротивление всего на 0,3% на каждый градус. Иное положение имеет место при использовании полупроводников. У некоторых полупроводников повышение температуры на 1°C увеличивает электропроводность на 3-6%, повышение температуры на 10° - примерно на 75%, а повышение температуры на 100°C увеличивает электропроводность в 50 раз. Благодаря высокому удельному сопротивлению полупроводников их применяют в качестве чувствительных термометров при дистанционных измерениях. Сопротивление металлических проводов даже очень тонких и длиной в несколько километров оказывается ничтожным по сравнению с сопротивлением термометра. Размеры полупроводниковых сопротивлений могут быть чрезвычайно малыми длиной в несколько десятых долей миллиметра. Это снижает инерционность прибора, так как при малых размерах сопротивление быстро принимает температуру окружающей среды. Значительное изменение электропроводности полупроводников в зависимости от температуры обеспечивает точность измерений.

Полупроводниковые термометры сопротивления под названием термисторов широко применяют в технике. С их помощью контролируют температуру в большом числе точек, причём показания её могут быть получены на приборах, установленных в одном пункте. При таком контроле температур в помещениях с помощью термисторов можно поддерживать температуру на желаемом уровне, включая и выключая нагревательные приборы, когда заданный уровень температуры отклоняется от нормы. Работают они при температурах до 300°C (573°K). Термисторы могут выполнять функции ограничителя времени. Для этого последовательно с полупроводниковым термосопротивлением включается то или иное активное электросопротивление. В результате в сети получается возрастающий со временем ток, так как ток разогревает полупроводник и повышает его электропроводность, следовательно, повышается и величина тока в цепи. По мере разогрева полупроводника сопротивление падает, а ток повышается ещё в большей степени. Параллельно с ростом температуры увеличиваются и потери тепла в окружающую среду до тех пор, пока они не сравняются с теплотой, выделяемой током; тогда будет достигнута равновесная температура, которую полупроводник и будет сохранять, пока к нему приложена данная разность потенциалов.

Продолжительность времени, необходимого для достижения равновесия и определённого тока при данной разности потенциалов, определяется размерами образца и условиями охлаждения. Такое «реле» времени допускает регулировку в самых широких пределах. Можно подобрать условия так, чтобы это время было от долей секунды до 10 мин. По достижении установленного времени может производиться автоматическое включение и выключение систем освещения или действующих установок.

Термосопротивления применяют как регуляторы температуры, температурные компенсаторы, в приборах для измерения утечки газа, для дистанционного измерения влажности, для измерения высоких давлений, механических напряжений, скорости или количества протекающих жидкости, скорости движения газов, для измерения больших ускорений.

При изготовлении термисторов пользуются окислами различных металлов, таких, как CuO, Mn3O4, UO2, а также Ag2S. Хорошие результаты дают смеси полупроводников, такие, как CuO+Mn3O4; Mn3O4+NiO; Mn3O4+NiO+Co3O4.

Вещества, используемые для изготовления термосопротивлений, представляют собой мелкокристаллические порошки. Составляя смесь, регулируют их проводимость, обусловленную ионами с разной валентностью. Это позволяет удовлетворять самые различные требования, которые предъявляются к термосопротивлениям в зависимости от их назначения.

Термосопротивления изготавливают прессованием полупроводникового порошка с последующим спеканием в твёрдую компактную массу, а также путём плавки полупроводника для придания ему нужной формы и размеров. Изготавливают их в виде шариков, стержней, дисков, шайб и чешуек.

Наша промышленность выпускает различные типы термосопротивлений, среди которых наиболее распространёнными являются: ММТ-1, ММТ-4, КМТ-1, КМТ-4, ММТ-8 и ММТ-9. В этих марках буквы являются условным обозначением материала термосопротивлений, а цифры – его конструктивного оформления. Первые четыре из приведенных сопротивлений применяют для измерения и регулирования температуры; в качестве «реле» времени; для дистанционного измерения влажности воздуха (по принципу психометра Ассмана); для замера малых скоростей движения и теплопроводности газов, жидкостей и для ряда других целей.

В качестве переменных сопротивлений без скользящего контакта в различных автоматических схемах слабого тока применяют термосопротивления с косвенным подогревом, обозначаемые ТКП-300, ТКП-20, что означает термосопротивление косвенного подогрева, в отличие от ТП – термосопротивления прямого подогрева. Цифры указывают электросопротивление полупроводника в омах при номинальной мощности, рассеиваемое в подогреваемой обмотке.

3.2.Фотосопротивления

Перевод электронов в свободное состояние или образование «дырок» в полупроводнике может происходить не только под влиянием тепла, но и в результате воздействия других видов энергии, таких, как световая, энергия потока электронов, ядерных частиц. Увеличение количества свободных электронов или «дырок» проявляется повышением электропроводности и возникновением тока.

У многих полупроводников связь между электронами и атомами настолько незначительна, что лучистой энергии света вполне достаточно для перевода электронов в свободное состояние. Для жёлтого света энергия фотона составляет 2 электрон-вольта, а у некоторых полупроводников перевод электронов в свободное состояние происходит под влиянием нескольких десятых долей электрон-вольта. У таких полупроводников повышение проводимости наблюдается даже под влиянием инфракрасной части спектра. Это даёт возможность обнаруживать на расстоянии многих километров излучение, исходящее от даже слабо нагретых тел. В результате такого излучения имеет место небольшое повышение тока в цепи с соответственным полупроводником. Первичное слабое повышение тока затем многократно увеличивается с помощью усилителей, иногда даже в миллион раз. Это даёт необходимый сигнал.

Повышение электропроводности, вызванное светом, носит название фотопроводимости, а основанные на этом явлении приборы называют фотосопротивлениями.

Подбирают фотосопротивления в зависимости от условий облучения, в которых им приходится работать. Наиболее употребительные материалы для фотосопротивлений в видимой части спектра – сернистый кадмий, сернистый таллий, сернистый висмут, а для инфракрасных лучей – сернистый, селенистый и теллуристый свинец.

Фотосопротивления широко применяют для сигнализации и автоматики, управления на расстоянии производственными процессами, сортировки изделий. С их помощью предупреждают несчастные случаи и аварии при нарушении хода процесса, автоматически останавливая машины.

Фотоэлектрическое устройство приходит в действие от появления или исчезновения лучей на фотосопротивлении или резкого изменения их интенсивности, например, при появлении пламени, наступлении темноты, прерывания луча.

Для контроля хода процесса луч света направляют на фотосопротивление. Между источником света и фотосопротивлением находится или проходит «указатель», свидетельствующий о нормальном ходе процесса. Таким указателем могут быть изделия, непрерывно движущиеся на конвейерной ленте. В случае нарушения нормального хода процесса конвейер может автоматически выключаться.

Фотосопротивление используют для сортировки изделий по их окраске или размерам. В зависимости от изменения размера или окраски изделия количество световой энергии, попадающей на фотосопротивление, может изменяться, а вместе с этим изменяется проводимость и ток в полупроводнике. Это даёт возможность направлять отсортированные изделия в предназначенные для каждого из них места.

3.3.Термоэлементы

Термоэлементы – приборы, в которых тепловая энергия непосредственно превращается в электрическую.

Основаны они на явлении Зеебека, заключающемся в том, что при нагреве места спая двух разнородных металлов в замкнутой цепи возникает электродвижущая сила. Явление Зеебека используется давно для измерения температур с помощью термопар. Для получения электрической энергии из тепловой металлические проводники не пригодны, так как коэффициент полезного действия (к.п.д.) термоэлементов из проволоки составляет всего 0,5%. Для этой цели используют полупроводники, которые дают возможность непосредственно превращать тепловую энергию в электрическую без участия каких-либо машин.

Характеристики

Тип файла
Документ
Размер
94,5 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее