93366 (681351), страница 2
Текст из файла (страница 2)
Таким образом, наблюдается отчетливый синергизм между действием гормонов коры и мозгового вещества надпочечника (катехоламины). В периферических тканях гидрокортизон и адреналин действуют вполне синергично. Известно, что гидрокортизон участвует в преобразовании адреналина в норадреналин. Симпатико-адреналовая система в ходе операционного стресса «запускает» высокий уровень жизнедеятельности в организме, а гипофизарно-адренокортикальная система поддерживает этот уровень длительное время.
Этот сложный комплекс нейроэндокринной регуляции, запускающий первичные реакции операционного стресса, необходим для двух главных целей — повысить производство энергии и увеличить кровоснабжение мозга и сердца в условиях агрессии, которую организму предстоит выдержать. В начале операционного стресса происходят метаболические и функциональные сдвиги, направленные на достижение этих двух целей.
Распад глюкозы (первоначальный источник энергетических процессов в клетке) может осуществляться тремя путями: анаэробным гликолизом в цитоплазме (путь Эмбдена—Мейергофа), аэробным гликолизом в митохондриях (продолжение предыдущего, или цикл Кребса) и прямым окислением, также происходящим в цитоплазме аэробным путем (пентозный цикл Варбурга, или гексозомонофосфатный шунт).
Перечисленными тремя путями из одной молекулы глюкозы образуется АТФ как источник энергии, но в разных количествах:
1) при первом (анаэробном) пути, когда глюкоза распадается до молочной и пировиноградной кислот, образуются 2 молекулы АТФ;
2) при втором (аэробном) пути, когда образовавшиеся на предыдущем этапе молочная и пировиноградная кислоты вступают в цикл Кребса, образуется 36 молекул АТФ;
3) при третьем (прямое окисление, пентозный цикл, когда в процесс образования энергии вовлекаются липиды) получается около 117 молекул АТФ.
Реакция организма на хирургическую агрессию сопровождается ростом энергетических процессов и высоким катаболизмом. Повышенный расход энергетических веществ при этом неизбежен, и если нет их внешнего поступления, то истощаются запасы организма. Подобное состояние повышенного расхода энергии в ответ на операционную травму реализуется через стимуляцию симпатико-адреналовой системы.
Главным энергетическим «сырьем» организма являются глюкоза и ненасыщенные жирные кислоты. Адреналин повышает уровень глюкозы в крови, стимулируя распад гликогена в печени, и мобилизует жирные кислоты из липидов, активизируя все три процесса образования энергии через биологическое окисление. Установлено, что в условиях операционной агрессии в крови резко возрастает уровень глюкозы и свободных жирных кислот, которые содержатся лавным образом в триглицеридах — основном депо их. Триглицериды находятся в организме преимущественно в виде липопротеидов низкой плотности (бета-липопротеидов), поступающих в кровь при стрессовом состоянии в больших количествах.
Таким образом, в усилении энергетического метаболизма при операционном стрессе участвует не только углеводная система гликоген — глюкоза, но и фосфолипидный метаболизм, причем он покрывает около половины энергетических трат при стрессе.
Реализация второй цели стрессовой стимуляции симпатико-адреналовой системы — увеличение кровоснабжения мозга и миокарда — происходит путем усиления и учащения сердечных сокращений, а также спазма артериол всех органов и тканей под действием катехоламинов. Этот спазм ограничивает кровоснабжение большинства органов, но мозг и миокард кровоснабжаются в избытке, поскольку на их артериолы катехоламины не действуют.
Если такое обкрадывание второстепенных структур продолжается кратковременно, то оно физиологически оправдано: в условиях внезапной агрессии важнее, чтобы центры выжили и могли бы управлять пусть даже полуголодными, но все же функционирующими органами. Но распределение продукции — дело тонкое, и если производители энергии и необходимых веществ слишком долго остаются голодными, это в конце концов сказывается и на центральных структурах. Любое стрессовое состояние, в том числе операционное, рано или поздно имеет такой финал, если не была предпринята коррекция в ходе его развития.
Второй этап стресса — поражение тканей. Вызванный катехоламинами спазм артериол, предназначенный для централизации кровотока, замедляет капиллярный кровоток в тканях, но кровоток через артериовенозные анастомозы возрастает. Благодаря этому периферическое сопротивление повышается не слишком резко, а венозный возврат крови к сердцу в начале стрессовой реакции оказывается достаточным.
Однако вскоре возникают реологические расстройства кровотока, связанные с его замедлением в капиллярных системах. Отмечаются агрегация клеток крови, ее секвестрация в капиллярных системах, вследствие чего: 1) возникает гиповолемия, усиливающая реологические расстройства; 2) ишемия различных органов и тканей, где произошла секвестрация, нарушает их функцию; 3) развиваются метаболический ацидоз, электролитные нарушения, образуются биологически агрессивные метаболиты, проникающие в общий кровоток через еще функционирующие сосудистые пути; 4) микроагрегаты клеток крови дают начало синдрому РВС, который в зависимости от состояния других систем организма может вести к ишемическому микротромбозу органов и тканей, коагулопатическому кровотечению.
Одним из первых органов, которые поражаются в результате реологических расстройств крови вследствие гиперкатехоламинемии, являются легкие.
Дыхательная недостаточность вносит свой вклад в нарастающее ухудшение метаболизма.
Нарушение метаболизма не только ведет к изменению КОС и электролитного равновесия, но и поражает реакции биологического окисления, которые первыми включаются в стрессовое состояние, чтобы увеличить продукцию энергии. Пока ткани получают достаточное количество кислорода, образование энергии идет по первому — второму пути (Эмбдена — Мейергофа — Кребса) с продукцией 38 молекул АТФ из 1 молекулы глюкозы. Однако ишемия тканей, дыхательная недостаточность сокращают поступление кислорода в ткани и клетки, и образование энергии останавливается на рубеже, с которого начинается аэробный цикл Кребса. Появляется гипоксический избыток лактата, усиливается метаболический ацидоз, сокращается производство энергии, так как на этом пути биологического окисления образуются лишь 2 молекулы АТФ. По избытку лактата можно даже в какой-то мере приближенно судить о тяжести стресса.
Избыток Н+ способствует выходу из клеток К+ и до тех пор, пока не страдают почки, они удаляют из организма избыток внеклеточного калия. Чем более выражен операционный стресс, тем большей степени достигает гипокалиемия.
Электролитный баланс существенно зависит от уровней антидиуретического гормона гипофиза и альдостерона, которые включаются не только как первичная стрессовая реакция (см. выше), но и как ответ на гиповолемию, возникающую на втором этапе операционного стресса. Диурез сокращается, тканевая гипергидратация, гипокалиемия и гипернатриемия усиливаются.
Как уже отмечалось, в ходе стрессовой реакции фосфолипидный метаболизм под действием катехоламинов резко усиливается, чтобы увеличить производство энергии из ненасыщенных жирных кислот. В связи с этим возникает опасный побочный эффект — меняются свойства клеточных мембран, потому что их основу составляют фосфолипиды. Вместе с сокращением содержания фосфолипидов нарушается и уровень холестерина, который участвует в поддержании целостности, проницаемости и функциональной активности мембран. Течение операционного стресса сопровождается морфологическим и функциональным поражением клеточных мембран, вследствие чего меняется ультрамикроструктура органов и снижаются их функциональные возможности.
Видимо, в первую очередь в этот процесс вовлекаются легкие, потому что поражение фосфолипидов при стрессе сказывается не только на их клеточных мембранах, но и на состоянии сурфактантной системы, основу которой составляет фосфолипиддипальмитоловый лецитин. Из-за этого страдает растяжимость легких, увеличивается их проницаемость, нарастает интерстициальный отек.
Третий этап стресса — функциональные следствия
Рассмотрение первых двух этапов стрессовых реакций при оперативном вмешательстве позволяет сделать заключение, что они ведут к поражению всех жизненно важных функций организма.
Гемодинамические расстройства
Гиповолемия вызывает ишемию всех органов с генерализованными расстройствами микроциркуляции и метаболизма — гипокалиемией, метаболическим ацидозом, осмолярными расстройствами и др. О расстройствах микроциркуляторного кровотока при стрессе свидетельствует увеличение в 2—3 раза лимфотока по грудному лимфатическому протоку — главному коллектору лимфы.
В связи с гиповолемией снижаются венозный возврат и сердечный выброс, возникают артериальная и венозная гипотензия В дальнейшем из-за метаболических расстройств может присоединиться миокардиальная недостаточность, еще больше снижается сердечный выброс.
Дыхательные расстройства
Операционный стресс ведет к дыхаельной недостаточности, резистентной к обычным режимам кислородной терапии. Это происходит в связи с возникновением респираторного дистресс-синдрома взрослых (РДСВ), который в послеоперационном периоде может послужить основой крайне тяжелой дыхательной недостаточности.
В результате операционного стресса возможно развитие стрессовой паралитической непроходимости пищеварительного тракта, возникающей вследствие преобладания адренергической стимуляции (катехоламины) над холинергической, которая управляет движениями кишечника. Паралитическая непроходимость ухудшает условия для вентиляции легких и ведет к выраженным расстройствам метаболизма, в том числе в связи с нарушением печеночного кровотока. Стрессовое поражение пищеварительного тракта заключается также в возникновении эрозий и язв слизистой.
Нарушение функций печени и почек
Операционный стресс сопровождается функциональной недостаточностью почек с задержкой воды, шлаков, нарушением ренин-ангиотензиновой регуляции гемодинамики. Повреждается и функциональная способность печени: возникают гипоальбуминемия, недостаток специфических белков, участвующих в свертывании крови и иммуно-глобулинов, снижается деструкция различных метаболитов и развиваются другие многообразные метаболические расстройства.
Нарушение иммунореактивности
В связи со сниженным образованием в печени иммуноглобулинов, а также из-за стрессового поражения гранулоцитов, лимфоцитов и нарушения фагоцитоза меняется иммунореактивность, что может проявиться септическими расстройствами, плохим очищением и заживлением ран и т.д.
Операционный стресс ведет к нарушению свертываемости крови и синдрому РВС. В связи с этим в послеоперационном периоде могут наблюдаться и тромбоэмболические осложнения, и коагулопатические кровотечения, возникновение которых облегчается недостаточностью функций печени. Если к расстройствам свертывания присоединяются стрессовые эрозии и язвы пищеварительного тракта, то кровотечение возникает особенно часто. Перечисленные стрессовые функциональные расстройства ведут к нарушению метаболизма, типичными проявлениями которого служат метаболический и респираторный ацидоз, клеточная гипокалиемия и др.
Объективная оценка операционного стресса
Объективизировать операционный стресс с помощью специальных критериев нелегко, потому что средства контроля, которыми мы сегодня располагаем в повседневной практике,— это контроль гемодинамики, газов крови, диуреза, КОС, электролитного баланса и т. д Перечисленные критерии относятся ко второму и третьему этапам операционного стресса, а на первом этапе объективный контроль (определение метаболитов агрессии, тестирование спинальных нейронов) пока не находит широкого распространения из-за трудоемкости исследования и запоздалости ответа.
Делаются попытки прогнозировать стрессовую реакцию гипофизарно-адреналовой системы, например с помощью гипогликемического теста [Blichertlolt M et al , 1979) В предоперационном периоде больному внутривенно вводят инсулин в дозе 0,2 ЕД/кг и определяют изменение уровней АКТГ и кортизона в крови. Они бывают такими же, как при стрессе во время внутрибрюшных операций. Надо полагать, что такой тест не единственный и не самый безопасный При использовании этого теста в модификации авторов гипогликемия достигает 2,2 ммоль/л.
Стрессовые тесты помогают выявить слишком активную стрессовую peaкцию гипофизарно-адреналовой системы или, наоборот, полное ее отсутствие. Эти данные требуются анестезиологу для выработки рациональной тактики (углубление нейровегетативной блокады, предварительное и послеоперационное введение гормонов надпочечника, дополнительное обследование, заставляющее отложить операцию), что зависит от осмысливания анестезиологом и хирургом результатов тестирования в сопоставлении с конкретной ситуацией.
3. Анестезиологическое пособие как антистрессовая защита
Защита от операционного стресса адекватна, если осуществляется на всех трех этапах его развития:
1) на первом этапе необходимо своевременное прерывание патологической импульсации, вызывающей стресс, в центральном или периферическом звене;
2) коррекция синдромов, развивающихся в ответ на прорвавшиеся патологические импульсы, должна выполняться на втором этапе;















