92514 (680736), страница 2
Текст из файла (страница 2)
Для качественной и количественной оценки витаминов в природных источниках используют как биологические, так и физико-химические методы. Принцип оценки биологической активности заключается в том, что животных (крыс, голубей, морских свинок) переводят на диету, содержащую белки, жиры, углеводы, минеральные соли и все витамины, кроме исследуемого. Затем устанавливают, какое количество испытуемого витамина может излечить или предохранить животное от авитаминоза. Параллельно проводят аналогичное испытание со стандартным препаратом.
Активность витаминов устанавливают в так называемых интернациональных или международных единицах (МЕ), которые представляют собой условное количество стандартного препарата в миллиграммах или микрограммах (/). За одну единицу принято считать минимальное количество витамина, излечивающее или предохраняющее животное от авитаминоза. Количество, соответствующее 1 МЕ у витаминов, различно. Например, 1 МЕ витамина А соответствует 0,344у аксерофтола ацетата, а для витамина Э — 0,025/эргокальциферола.
Биологический метод оценки активности витаминов очень трудоемок, точность его сравнительно невелика. Поэтому для испытания подлинности и количественного определения витаминов обычно используют физические, химические и физико-химические методы.
3. Гормоны и их синтетические аналоги
Гормоны — биологически активные вещества, продуцируемые железами внутренней секреции в очень малых количествах. Они регулируют все жизненно важные процессы, протекающие в организме. Только половые гормоны оказывают влияние более чем на 120 функций организма.
Исследования последних десятилетий открыли новую страницу в области химии и перспектив применения гормонов. Синтезированы гормоны гипофиза, ряд гипоталамических гормонов. Некоторые из них (рифатироин, соматостатин) рекомендованы для клинического применения. Открыты морфиноподобные гормоны (энкефалины, эндорфины), гормоны памяти и сна. Это один из путей создания новых анальгетиков, не вызывающих привыкания.
Чрезвычайно актуальными оказались исследования нейрогормонов, имеющих пептидную структуру. Разработаны методы синтеза этих гормонов и их многочисленных структурных аналогов. Оказалось, что некоторые из них могут воздействовать на сердце, проявляя медиаторные или модуляторные функции. Это создало предпосылки применения гормонов как средств, предупреждающих развитие таких тяжелых сердечно-сосудистых заболеваний, как атеросклероз и инфаркт миокарда.
Одно из крупнейших достижений в области химии гормонов — установление химической структуры и осуществление синтеза инсулина. Эти исследования выполнены в ряде лабораторий мира, в том числе и в нашей стране. Они имеют пока лишь теоретический интерес, так как выход конечного продукта очень мал, а затраты на выполнение синтеза огромны. Поэтому используют иные способы получения инсулина, в т.ч. на основе животного сырья и использования методов генной инженерии.
Важное значение для жизнедеятельности организма имеют тканевые гормоны, или кинины. Они формируются не в железах внутренней секреции, а в различных точках организма, там, где их влияние в данный момент необходимо. Кинины имеют пептидную структуру. Они регулируют основные биохимические и физиологические процессы в организме и оказывают влияние на многие его функции. Это явилось предпосылкой использования некоторых кининов в медицине и ветеринарии.
Современные исследования лекарственных средств животного происхождения выполняются в нескольких направлениях. Наибольший интерес вызывает изучение компонентов органов и тканей, представляющих собой по химической структуре белки, гликозаминогликаны и нуклеиновые кислоты. Они отличаются широким спектром действия. В настоящее время номенклатура ЛС, выделенных из органов и тканей животных и применяемых в медицинской практике, значительно расширилась за счет использования пептидных биорегуляторов (цитомединов). Получены .'!(' из вилочковой железы, простаты, трахеи, сосудов и других органов животного сырья.
4. История создания, классификация, способы получения и анализа антибиотиков
4.1 Предпосылки открытия и исследования антибиотиков
Антибиотиками называют вещества, продуцируемые микроорганизмами, высшими растениями, животными тканями в процессе их жизнедеятельности и обладающие способностью оказывать на микроорганизмы, простейшие, некоторые вирусы избирательное бактериостатическое или бактерицидное действие. Способность антибиотиков проявлять бактериостатическое или бактерицидное действие в отношении болезнетворных микроорганизмов, не оказывая при этом токсического действия на организм человека, используют для лечения различных заболеваний. Известно, что такого рода ЛВ относятся к числу химиотерапевтических средств.
В основе действия антибиотических веществ лежит антибиоз, т.е. явление антагонизма микроорганизмов, открытое впервые Л.Пастером в 80-х гг. XIX в. Сущность этого явления заключается в том, что одни микроорганизмы выделяют в окружающую среду различные вещества, способные подавлять рост и размножение других микроорганизмов.
Первые антибиотики были выделены из различных штаммов плесени. Весьма примечательным является тот факт, что плесень еще в X-XI вв. применялась Авиценной и в народной медицине Азербайджана для лечения гнойных ран.
Первое исследование плесени Pénicillium notatum связывают с именем английского микробиолога А. Флеминга, который в 1928 г. обнаружил ее антибиотические свойства в отношении золотистых стафилококков. Однако А. Флемингу не удалось выделить в чистом виде антибиотик, названный им пенициллином. Только X. Флори и Дж. Чейн в 1940 г. разработали способ выделения пенициллина из культуральной жидкости.
Заслуга в создании пенициллина в нашей стране, разработки способов его получения из различных штаммов плесени принадлежат З.В. Ермольевой, которая в 1942 г. получила вместе с Т.И. Балезиной отечественный препарат — пенициллин-крустозин ВИЭМ. Эти исследования проводились в годы Великой Отечественной войны и внедрялись в практику госпиталей.
Так последовательное накопление научных фактов и экспериментального материала привело к величайшему открытию XX в. — созданию принципиально нового ЛВ. Начиная с 1939 г. исследования в области антибиотиков развиваются бурными темпами. В 1942 г. наши ученые Г.Ф. Гаузе и М.Г. Бражникова получили грамицидин из почвенных бактерий. В 1944 г. А. Шатц, Е. Буги и З.А. Ваксман открыли стрептомицин. Продуцирующие его лучистые грибы в последующие годы (1951-1954) явились источником получения многих новых антибиотиков (канамицины, неомицины, новобиоцин и т.д.). В 1947 г. Дж.Эрлих и К.Барц выделили хлоромицетин. Выяснение его химической структуры позволило вскоре осуществить промышленный синтез этой группы антибиотиков.
В 1948 г. открыты первые антибиотики из группы полимиксинов, а два года спустя получены тетрациютины. В последующие годы внимание исследователей привлекла группа антибиотиков, имеющих гликозидоподобную структуру (аминогликозиды, макролиды, анзамицины).
Большой вклад в развитие исследований антибиотиков внесли ученые М.М. Шемякин, А.С. Хохлов (Институт биоорганической химии АН СССР). Следует иметь в виду, что исследования антибиотиков стали возможными в результате познания механизмов процессов, происходящих на молекулярном уровне. Большой вклад в изучение молекулярных механизмов действия антибиотиков внесли труды академиков Ю.А. Овчинникова, В.А. Энгельгардта, А.С. Спирина.
Многие из применяемых в нашей стране антибиотиков разработаны во Всесоюзном научно-исследовательском институте антибиотиков (ВНИИА). Создание этого института совпало со становлением отечественной промышленности антибиотиков и связано с именами ученых З.В. Ермольевой, Н.А. Красильникова, В.Н. Шапошникова, А.Н. Белозерского, С.М. Навашинаидр.
ВНИИА — крупный научный центр, в котором комплексно развиваются все разделы генетики, селекции и физиологии микроорганизмов, биоорганической и органической химии, технологии, стандартизации и контроля антибиотиков. В институте осуществляется система поиска новых природных антибиотиков, а также получение их методами химической и микробиологической трансформации. Фундаментальные исследования и интенсификация методов производства антибиотиков обеспечивают как перспективные научные направления, так и интересы промышленного производства антибиотиков. Многие годы ВНИИА успешно руководил акад. РАМН С.М. Навашин.
Широкие исследования в области полиеновых и других антибиотиков ведутся в С.-Петербурге во Всесоюзном научно-исследовательском технологическом институте антибиотиков и ферментов медицинского назначения (ВНИТИАФ). Работами И.М. Терешина установлена возможность применения полиеновых антибиотиков для лечения не только грибковых, но также вирусных инфекций, злокачественных новообразований и даже атеросклероза.
Наиболее широко применяемые в качестве ЛВ природные антибиотики и их полусинтетические аналоги классифицируют на следующие группы:
-
Антибиотики алициклического строения (группа тетрациклинов, их полусинтетические аналоги и др.).
-
Антибиотики ароматического ряда (группа левомицетина).
-
Антибиотики гетероциклической структуры (пенициллины, их полусинтетические аналоги, цефалоспорины и др.).
-
Антибиотики-гликозиды: стрептомицины; антибиотики-аминогликозиды (канамицины, неомицины, гентамицины, мономицины); макролиды (эритромицины и олеандомицин); анзамицины (рифамицины и их полусинтетические аналоги); полиеновые антибиотики с гликозидоподобной структурой (нистатин, амфотерицин, микогептин).
-
Антибиотики, обладающие противоопухолевым действием, можно классифицировать на производные ауреоловой кислоты, антрациклины, производные хинолин-5,8-диона и актиномицины.
-
Антибиотики-полипептиды (грамицидины, полимиксины и др.).
4.2 Роль антибиотиков в развитии химиотерапии
Внедрение в медицинскую практику антибиотиков помогло победить ряд тяжелых заболеваний. Достаточно указать, что благодаря применению антибиотиков смертность от воспаления легких снизилась в 10 раз, острой дизентерии — в 11 раз, заражений крови и воспалений брюшины — в 4-5 раз.
Антибиотик может быть использован в качестве ЛВ, если он проявляет антимикробную активность в человеческом организме и не имеет токсического действия. Именно поэтому из открытых нескольких тысяч антибиотиков лишь несколько десятков нашли применение в медицинской практике.
Длительное использование одних и тех же антибиотиков в качестве ЛС постепенно приводит к повышению устойчивости первоначально чувствительных к их действию naît)генных микроорганизмов. Это явление — следствие радикальных изменений в геноме микроорганизмов. Оно постепенно приводит к широкому распространению устойчивых к антибиотикам форм стафилококков, кишечных палочек, протеев и других микроорганизмов.
Антибиотики, особенно беталактамиды и аминогликозиды, принято разделять на ЛП I, II, III, IV поколений. Такая классификация учитывает не только время их внедрения в медицинскую практику, но и терапевтические свойства.
В последние два десятилетия в исследованиях антибиотических веществ появились новые направления. От эмпирических поисков новых антибиотиков ученые перешли к глубокому и всестороннему исследованию процессов биосинтеза, путей различной модификации (трансформации) молекул известных антибиотиков, изучению новых аспектов их фармакологического действия.
В результате исследований продуктов трансформаций природных молекул были созданы полусинтетические пенициллины итетрациклины, цефалоспорины и рифамицины. Эти вещества оказались более эффективными, чем их природные предшественники. Значительные успехи достигнуты в области исследования антибиотиков для лечения злокачественных новообразований.
Чрезвычайно перспективными являются исследования по получению новых штаммов продуцентов антибиотиков. Они позволяют резко повысить интенсивность биосинтеза, что дает огромный экономический эффект в промышленном производстве антибиотиков. Повышения активности продуцентов можно достигнуть, используя методы генной инженерии, в частности слиянием протопластов. Это дает возможность в дальнейшем перейти к получению «гибридных веществ», сочетающих действие нескольких антибиотиков, например свойства аминогликозида и макролида. Такие вещества будут иметь более широкий спектр антибактериального действия.
В последнее время обнаружена возможность применения некоторых антибиотиков для нормализации функции сердца. Из бактерий рода Streptomyces выделен антибиотик, который проявляет фармакологическое действие ионофора кальция. Результаты исследований, совместно проведенных нашими и американскими учеными, свидетельствуют о высокой эффективности этого антибиотика при сердечной недостаточности.
4.3 Способы получения антибиотиков
Более половины из известных антибиотиков продуцируют лучистые грибы рода Streptomyces — актиномицеты (стрептомицеты). К этой группе относятся стрептомицин и другие антибиотики-гликозиды (неомицины, канамицины), тетрациклины, левомииетин, антибиотики-макролиды (эритромицин, олеандомицин) и анзамицины (рифамицин), полиеновые антибиотики (нистатин) и др. Другим важным продуцентом являются лучистые (плесневые) грибы — различные виды рода Pénicillium. Они осуществляют биосинтез пенициллинов, а также некоторых противоопухолевых и противовирусных антибиотиков. Бактерии, главным образом рода Bacillus, продуцируют большинство антибиотиков- полипептидов. Они, как правило, высокотоксичны, но некоторые из них применяют в медицине (грамицидин, полимиксин и др.).
Способы получения антибиотиков можно подразделить на три основные группы.
-
Микробиологический синтез на основе плесневых или лучистых грибов. Этим способом получают антибиотики тетрациклинового ряда, природные пенициллины, антибиотики-гликозиды, макролиды и др.
-
Химический синтез из простых органических веществ. Его используют для получения антибиотиков, имеющих несложную химическую структуру (левомицетин и его производные).
-
Сочетание микробиологического и химического синтеза. На основе трансформации молекул природных антибиотиков получают полусинтетические антибиотики (полусинтетические пенициллины, цефалоспорины, тетрациклины и др.).
Получение большинства природных антибиотиков основано на биосинтезе, осуществляемом в клетке микроорганизма. Микробная клетка выполняет роль сложнейшей химической лаборатории, в которой происходят очень тонкие процессы, недоступные пока для органического синтеза, причем для их проведения не требуется высоких температур, повышенного давления, катализаторов.