90883 (679539), страница 2
Текст из файла (страница 2)
В пористую микросферу из карбоната кальция (CaCO3) внедряют белок, ДНК, иные вещества, которые нужно доставить в организм. Покрывают ее полупроницаемой оболочкой из немногих слоев естественных полимеров — полисахаридов. Можно покрыть каркас полипептидами или приобрести комбинированную оболочку. Если микросферы в полимерной оболочке поместить в подкисленный раствор, карбонат кальция внутри растворится и уйдет через полимерную мембрану. Внутри останется только белок или ДНК, подлежащие транспортировке. Микрокапсулы с бодрой «начинкой» готовы
Средний диаметр микрокапсул ради доставки ДНК-вакцин — 1—2 микрона (мкм). Его можно уменьшить, если взять карбонатные микросферы меньшего размера. Такие микрокапсулы можно ввести подкожно или даже в кровь. Короткий размер обеспечивает им свободное действие по сосудам: они меньше эритроцитов (диаметр которых 7,2—7,5 мкм), пластичны, меняют форму, протискиваясь через утонченные капилляры. Клетки «заглатывают» капсулы, их оболочка растворяется клеточными ферментами, выпуская бодрую «начинку».
Метод разрешает не просто доставить лекарственные вещества в клетки организма, но продлевать и регулировать время их движения. Если в микрочастицу вместе, например, с ДНК или снадобьем поместить фермент, расщепляющий оболочку капсулы изнутри, высвобождением снадобья можно править: чем меньше фермента, тем медлительнее рушится оболочка.
Российские ученые успешно применили микрокапсулы ради получения ДНК-вакцин, испытали их на клеточных линиях и лабораторных мышах. Традиционная вакцина содержит белки вирусов или бактерий, ДНК-вакцина — гены таких белков. Белки-антигены традиционной вакцины скоро разрушаются, поскольку чужеродны. То же проистекает с некапсулированной ДНК — ее в организме скоро расщепляют соответствующие ферменты. Микрокапсулированная ДНК, попав в клетки, разрешает организму самому производить достаточное число антигена, формирующего иммунитет. Это проистекает в движение длительного времени: в организме капсулы постепенно, как минимум месяц, растворяются и помогают нужную концентрацию антигена, что важно ради воспитания стабильного иммунитета.
Привлекательность ДНК-вакцин заключается в относительной простоте их создания, дешевизне производства и удобстве хранения, что позволило некоторым авторам заговорить о ДНК-вакцинах, как о вакцинах третьего поколения и о произошедшей революции в вакцинации. Однако, их широкое применение сдерживается некоторыми опасениями, вызванными, в первую очередь, теоретической возможностью внедрения такой чужеродной ДНК в геном вакцинированного организма. Тем не менее, до сих пор не получено сколько-нибудь убедительных доказательств встраивания ДНК таких вакцин в геном млекопитающих, в то время как имеется множество подтверждений о длительном существовании введенных в организм ДНК-вакцин в форме исходной плазмиды. Впрочем, подобные опасения, пожалуй, можно считать излишними, если вспомнить, что при использовании классических вакцин (применяющихся уже две сотни лет) в организм человека тоже попадает, в частности, ДНК патогена, которая теоретически также способна встраиваться в геном. Более того, как считают некоторые исследователи – если бы ДНК-вакцины были разработаны раньше классических, то ситуация могла бы быть в корне обратной, и предложения применять «живые» или «убитые» вакцины, как вакцины нового типа, также вызывали бы аналогичные и наверное справедливые опасения.
К преимуществам ДНК-вакцин, кроме уже упоминавшейся простоты их получения, производства и хранения, можно отнести и то, что при введении в организм они как бы имитируют нахождение в нем настоящего патогена, поскольку образование белковых продуктов, выступающих антигенами, происходит в этом случае непосредственно в клетках человека или животного и, следовательно, все посттрансляционные модификации белков происходят в полном соответствии тому, как это совершается при настоящей инфекции. Видимо, этим можно объяснить и высокий уровень иммунного ответа на ДНК-вакцины, и их специфичность.
Особенности иммунного ответа. Механизмы иммунного ответа на введение ДНК-вакцин, не исследованы. При иммунизации убитыми (химическими, субъединичными) вакцинами экзогенные антигены разрушаются до пептидов внутри эндосомных компартментов клетки. Далее они появляются на поверхности этих клеток в соединении с молекулами главного комплекса гистосовместимости II класса (МНС-И). Их распознавание СД4 + Т-хэлперными лимфоцитами (Th) побуждает последних к секреции растворимых факторов (цитокинов), регулирующих эффекторные механизмы гуморального иммунного ответа.
Эффективность иммунизации. J.J. Donnelly et al. (1995) наблюдали перекрестно-штаммовый (видоспецифический) иммунитет в отношении возбудителей гриппа. Самок мышей линии BALB/c в 4-, 7- и 10-недельном возрасте иммунизировали 100 мкг плазмидной ДНК с геном нуклеопротеина (NP), клонированным из генома вируса гриппа A/PR/8/34(H 1N1) (рис. 1, А, синие кружки). Мышам контрольной группы вводили по этой же схеме векторную плазмиду без клонированного гена (светлые кружки). В 13-недельном возрасте грызунов инфицировали интраназально 200 LD50вируса А/НК/68 (H3N2). Мышей другой экспериментальной группы вакцинировали по такой же схеме очищенным NP, а контрольной — не иммунизировали. Животных инфицировали интраназально 200 LD50 вируса А/НК/68 (H3N2).
Защитный эффект при иммунизации ДНК-вакциной составлял 100%, а при использовании химической вакцины на основе этого же антигена он отсутствовал.
Интересную конструкцию плазмидного вектора для иммунизации животных против вируса клещевого энцефалита разработали Е.Э. Митрофанов и соавт. (1997). Вектор включает ген гликопротеина оболочки вириона и ген неструктурного гликопротеина NS1, который находится на поверхности инфицированных вирусом клещевого энцефалита (ВЭК) клеток. Защитный эффект ДНК-иммунизации исследовали на мышах линии BALB/c. Животных 5-кратно иммунизировали 80–100 мкг вектора pSVK3-ENS1 и через неделю после последней прививки инфицировали 100 LD50 ВЭК (штамм Софьин). В контрольной группе заболели все мыши и 43% из них погибли. Животные, иммунизированные ДНК-вакциной, оставались здоровыми в течение всего срока наблюдения.
При изучении длительности иммунного ответа Н.L. Davis обнаружили, что после ДНК-иммунизации мышей геном поверхностного антигена вируса гепатита В уровень антител выходит на плато на 104 сут и остается стабильным 18 мес. Бустерная иммунизация через 7 мес увеличивала количество антител более чем в 10 раз. Теоретически с помощью ДНК-вакцины при однократном ее введении можно достичь пожизненной резистентности иммунизированных особей к одному или нескольким возбудителям инфекционных болезней.
Массовая иммунизация. Некоторые авторы говорят о дешевизне ДНК-вакцин, однако исследователи, которые сами выделяли плазмидную ДНК, хорошо представляют, что получение в лабораторных условиях 100 мкг плазмид для иммунизации только одной мыши — процесс трудоемкий. Тем более что в любом препарате ковалентно замкнутая кольцевая (кзк) плазмида при хранении постепенно образует открыто кольцевые и линейные формы, трансфецирующая активность которых в 100 и более раз ниже, чем у кзк форм ДНК плазмид. Поэтому ДНК-вакцина, предназначенная для иммунизации животных в условиях хозяйств, должна быть разработана для внутрикожной инъекции, то есть представлять собой композицию, состоящую из мельчайших твердых частиц с сорбированными на них плазмидными ДНК. Внутрикожное введение ДНК-вакцины целесообразно осуществлять сжатым воздухом с помощью специального точно дозирующего аппарата. Альтернативным способом введения ДНК-вакцин могут быть саморазрушающиеся бактериальные векторы, применяемые перорально.
Новые инфекции. ДНК-вакцины могут стать важным элементом мероприятий, направленных на ликвидацию вспышек новых инфекций среди сельскохозяйственных животных. Клонирование в плазмидный вектор с помощью ПЦР гена полноразмерного оболочечного гликопротеина вируса требует не более недели, после этого ДНК-вакцина готова для применения в очаге эпизоотии. В экстренном случае, при неизвестности гена протективного антигена, можно использовать экспрессионную библиотеку генов. Целесообразно заранее подготовить плазмиды, экспрессирующие гены протективных белков возбудителей африканской чумы свиней, везикулярного стоматита крупного рогатого скота, чумы рогатого скота, ящура и некоторых других.
Преимущества ДНК-иммунизации перед распространенными способами иммунопрофилактики массовых инфекционных болезней животных заключаются в том, что ДНК-вакцины без персистирования в макроорганизме приближают искусственно вызываемый иммунный ответ к возможному при инфицировании природными возбудителями; иммунная реакция на введение генов антигенов сбалансирована и состоит из системного и местного ответов. Каждый из них включает иммуноглобулиновый и клеточный ответы. Иммунный ответ такого типа важен для противодействия инфекциям, вызываемым вирусами и грамотрицательными микроорганизмами.
Заключение
За последние 10 лет в вакцинологии сформировалось новое направление, который основан на принципе, когда в организм вводится не белок, но нуклеиновая кислота (ДНК либо РНК). Это направление называют «генетической иммунизацией», «вакцинацией нуклеиновыми кислотами», «ДНК-вакцинацией» и связывают с данным направлением революционные изменения в вакцинологии ближайшего будущего. Несмотря на то, что способность ДНК и РНК инициировать синтез кодируемых ими белков после проникновения в клетку известна давно, только в середине 90-х годов предыдущего сотни лет были осознаны и сформулированы возможности данной технологии сообразно к медицине, ветеринарии и фундаментальной науке. Этот новый подход довольно прост, дешев и главнейшее дает возможность унифицировать методические подходы. За разработки относительно безопасных векторных систем, повышения эффективности доставки нуклеиновых кислот в ткани, обнаружения возможности длительной (до влага) экспрессии чужеродной ДНК в трансформированных клетках in vivo стал ясен потенциал данной технологии в генотерапии и создании вакцинных препаратов. В 1993г. было показано, что ДНК-вакцинация приводит к полноценному иммунному ответу, то есть к образованию антител (гуморальный реакция) и цитотоксических Т-лимфоцитов (клеточный реакция), обеспечивает у животных высокий порядок защиты от вирусной инфекции.
Интерес к ДНК-вакцинам стимулирует строй перспективных свойств, которыми они обладают.
Используя один и тот же вирусный или плазмидный вектор, можно создавать вакцины, против разных инфекционных заболеваний, меняя только последовательность, которая кодирует необходимые антигены. При данном отпадает нужда манипулирования с патогенными вирусами и бактериями. Отпадает дорогостоящая и сложная действие очистки антигенов. Важно то, что препараты ДНК-вакцин не требуют специальных методов доставки и стабильны длительное время при комнатной температуре.
ДНК-вакцины содержат структуры, распознаваемые системой врожденного иммунитета как чужие (CpG олигонуклеотиды бактериальной нуклеиновой кислоты). Поэтому от них ожидают высокую иммунологическую эффективность.
В время разработаны и испытываются ДНК-вакцины против инфекций вызываемых вирусами гепатитов В и С, вирусом гриппа, вирусом лимфоцитарного хориоменингита, вирусом бешенства, вирусом иммунодефицита человека (ВИЧ), вирусом японского энцефалита и возбудителями сальмонеллеза, туберкулеза и некоторых паразитарных заболеваний (лейшманиоз, малярия). Выбор инфекций связан не только с их высокой актуальностью для человечества, но и с безуспешными попытками сотворить надежные вакцинные препараты классическими, широко используемыми сейчас методами. ДНК-вакцинация представляется одним с перспективнейших направлений в борьбе с раком.
Литература
-
Вакцинопрофилактика под ред. В.К. Таточенко, Н.А. Озерецковского) / М., 1994
-
Супотницкий М.В. // Ветеринария. 1996
-
Вишняков И.Ф. и др. // Ветеринария. 1998















