90758 (679445), страница 6
Текст из файла (страница 6)
Таблица 5 отвечает на следующие:
- продукт в котором данная НАМК, относительно других продуктов содержится в max количестве (в % СКОР);
-
продукт в котором данная НАМК, относительно других продуктов содержится в min количестве (в % СКОР).
Содержание НАМК в продуктах в (%) СКОР.
Таблица 5.
MAX MIN |
НАМК Продукт Сод.(мг/1г белка) СКОР Продукт Сод.(мг/1г белка) СКОР |
ИЛЕ яйцо к.(белок) 60 150 пшеница 42 105 |
Ф.+Т. молоко 111 185 линь (щ., с.) 64 107 |
М.+Ц. яйцо к.(белок) 64 183 пшен. И фас. 30 85 |
ВАЛ баранина 85 170 гречиха 35 70 |
ТРЕ карп 56 141 гречиха 22 55 |
ТРП гречиха 20 200 . линь (щ., с.) 10 100 |
Эти таблицы приближают к ответу на вопрос: какой продукт может влиять на обмен той или иной НАМК. Для выяснения этого момента нашего исследования составлена Таблица 6, которая представляет собой синтез Таблиц 4 и 5, в определенном смысле - «гибрид». Суть ее в следующем:
-
намечены две колонки (max и min), они включают: наименование продукта, наименование НАМК и ее содержание в % СКОР;
-
max – включает продукты с «оъективным» максимумом содержания НАМК – и относительно НАМК собственного белка, и относительно содержания НАМК в других продуктах;
-
min – включает продукты с “объективным” минимумом содержания НАМК как относительно НАМК собственного протеина, так и относительно содержания НАМК в других рассматриваемых продуктах;
* значимость влияния на обмен веществ представителей как max так и min допустимо считать одинаковой
-
принцип распределения:
-
если в колонке MAX (таб. 5 ) находится значение содержания НАМК в продукте одинаковое с тем, что в колонке max (таб. 4) (напр.: лиз карп 119 216% в таб. 5 и в таб. 4 карп 344 216%), то продукт может «значимым» представителем данной НАМК в колонке max (таб. 6) ( карп лиз 216), если продукт, по данной НАМК «появляется» только в одной таблице, то он не вносится в колонку max таб.6 (напр.: таб. 4: пшеница 161 99 ф+т 138, но в таб. 5: ф+т мол 111 185);
-
колонка min таб. 6 заполнена согласно тому же правилу, опираясь на данные колонок min и MIN таблиц 5 и 4 соответственно.
** важно отметить, что в большинстве подвергнутые оценке продукты являются носителями избытка, в понятном смысле, НАМК.
Представленность НАМК в продуктах.
Таблица 6.
Max | Min | |||||
НАМК | Продукт | %СКОР | НАМК | продукт | %СКОР | |
Лиз | Карп | 216 | Лиз | пшеница | 49 | |
Трп | Гречка | 200 | Трп | Линь, судак, щука | 100 | |
Мет + Цис | Яйцо куриное (белок) | 183 | Мет + Цис | Фасоль | 86 | |
Фен + Тир | молоко | 185 | Тре | Гречка | 55 | |
Вал | Баранина | 170 |
Таким образом, таб. 6 , а также данные о функциях НАМК, описанные в этом пункте и п.2.1. дают возможность указать на источник того или иного вида изменений обмена веществ, например:
-
Недостаток синтеза белков, в том числе, гистонов, наряду с причинами иного характера, может быть связан с избытком в рационе питания продуктов из пшеницы или недостатком мяса карпа (функция лизина).
-
Избыток образования кетоновых тел, дофамина, адреналина, норадреналина, дофахромов, гормонов щитовидной железы, наряду с причинами иного характера, может быть связан с преимущественным употреблением белков молока (функция фенилаланина и тирозина).
-
Недостаток синтеза холина, креатина, полиаминов, глутатиона; нарушение обмена никотиновой кислоты; признаки избыточного перекисного окисления; недостатка тормозного медиатора ЦНС таурина; симптомы недостаточной толерантности сердечной мышцы к гипо-, аноксии – все они могут появляться, наряду с причинами иного характера, при избытке в питании фасоли или недостатке в рационе белка куриных яиц (функция метионина и цистеина).
следует помнить о качестве пищевого протеина в целом:
-
белок куриного яйца содержит антивитаминный (В1) фактор авидин (овомукоид), который в течении 10 минут, при температуре 100 С, не теряет своей активности [36];
-
некоторые растительные белки трудно доступны для действия пищеварительных ферментов по причине наличия антипротеолитических ферментов (белок фасоли и других бобовых) [5].
-
Избыток синтеза серотонина, мелатонина, кетоновых тел, кинуренина, никотиновой кислоты, эндогенных трп – производных канцерогенов наряду с причинами иного характера, может быть связан с недостатком в питании мяса таких промысловых рыб как лещ, судак, щука или с избыточным присутствием в рационе протеина гречневой крупы (функция триптофана);
-
Избыток синтеза в организме янтарной кислоты, иммунная и фагоцитарная гиперреактивность могут быть связаны, наряду с другими причинами, с избытком в рационе питания мяса барана (функция валина).
Все это (п.п.1-5), может являться примером реализации структурной информации, заложенной в том или ином пищевом протеине. Механизм этого процесса описан несколько ниже.
Наиболее известными проявлениями связи «фенотип* организма – АМК состав пищевого протеина» приняты следующие.
(*фенотип – совокупность признаков организма, сформировавшихся в процессе индивидуального развития, как то: артериальное давление, частота сердечных сокращений, температура тела, степень пигментации кожи и ее дериватов и т. п .)
-
Дефицит трп вызывает симптомы, характерные для авитаминоза РР (пеллагра); недостаток мет – жировую дистрофию печени и почек; недостаток гис – снижение количества гемоглобина; лей – АМК при недостатке, которой возникает недостаточность синтеза инсулина и т. п.[3; 4].
-
ДНК РНК Белок Клетка Организм [4; 37].
Такая связь определяет, что белок влияет на признаки организма. Но не всегда есть прямая зависимость между наследственной информацией (н. и.) ДНК и синтезируемым белком (его качеством, а значит и свойствами), по причине того, что имеется естественный уровень неоднозначности реализации н.и. ДНК in vivo - 10-4 ошибок на кодон [38; 39; 53]. Регуляция точности синтеза белка осуществляется на различных уровнях, в их числе находится и спектр свободных АМК клетки [38; 39; 54]. В случае несоответствия этого параметра клетки спектру АМК синтезируемого белка, возникают нарушения в активности АРС-аз, нарушения в образовании аминоацил-тРНК, что приводит к миссенс-ошибкам (точковым заменам АМК), что качественно меняет белок [3; 37]. Известно, что у кроликов изменяется первичная структура белка некоторых ферментов при недостаточном поступлении АМК [3]. Этот процесс нарушения синтеза белка может объяснить механизм изменения состава первичной структуры, а значит в определенной мере и свойств, синтезируемых в клетке белков под влиянием АМК состава пищи. Это в свою очередь объясняет, в известной мере, механизм формирования ферментативного профиля организма, а отсюда и структурного своеобразия различных представителей даже внутри одного вида [40]. Жесткая связь этих «взаимоотношений» исключена благодаря множеству эволюционных усовершенствований (наличие депо питательных веществ, избирательная проницаемость мембраны клетки и др.), но подчеркнуть их вероятность в «рамке» этой работы представлялось необходимым, что и проделано.
Естественно, что высказанное является аргументированным предположением, но при наличии опытного подтверждения может приобрести статус закономерности. Такой уровень исследованности, при оценивании столь важной АМК-ой составляющей качества пищевого белка никоим образом не умаляет необходимости упоминания о такого рода взаимоотношениях между протеином пищи и организмом хозяина, скорее, наоборот , именно это послужило причиной для отведения данному вопросу отдельного внимания.
-
Влияние АМК состава пищи на функции ЦНС.
Вторым, по значимости, отправным пунктом, участвующим в реализации “структурной информации” - формировании фенотипа организма человека, определяется влияние АМК состава пищи на метаболический и физиологический статус организма, посредством изменения функции ЦНС [41; 42]. Возможность этого была предвидена еще академиком А.А. Покровским, а в настоящее время этот факт установлен на опыте (влияние на рост и состав тела животных; изменение возбудимости ЦНС, изменение соотношения нейротрансмиттеров в гипотламусе и др.) [43; 44; 55]. В качестве путей такого влияния могут быть рассмотрены следующие:
-
доказанные функции медиаторных АМК: L - глу, L - асп, гли [45];
-
некоторые (АМК) являются ближайшими предшественниками сильнодействующих биологических соединений: фенилаланин (фен), тирозин (тир) - предшественники катехоламинов; гистидин (гис), триптофан (трп) - предшественники биогенных моноаминов гистамина и серотонина, соответственно; глутаминовая кислота (глу) - тормозного медиатора ГАМК [4; 45];
-
ткань головного мозга чувствительна к количеству и качеству АМК состава крови (особо высока проницаемость ГЭБ для фенилаланина (из рис. 2)), такая особенность мозга обусловлена определенными свойствами ГЭБ (насыщаемостью, стереоспецифичностью, конкурентным ингибированием (к. и.), которое, в свою очередь, подразделяется на (к. и.) для классов АМК: нейтральных, основных, дикарбоновых ) [24; 25];
-
высокая концентрация одной или более АМК в крови человека способна конкурентно угнетать транспорт других АМК в такой степени, что это может приводить к нарушению развития или метаболизма головного мозга:
-
высокий уровень фенилаланина в плазме при фенилкетонурии сопровождается психическим недоразвитием;
-
способность проникновения нейтральных АМК у взрослых больных фенилкетонурией в 2 раза ниже нормы;
-
гиперлизинемия может играть существенную роль в генезе нарушения роста головного мозга в результате угнетения проникновения аргинина [24].
-
отмечен положительный эффект применения лекарственных препаратов глутаминовой кислоты, глицина при заболеваниях ЦНС [46].
Рис 2
Как указано выше, второй «точкой» приложения влияния АМК состава пищи на фенотип организма человека является ЦНС - система нашего организма, главной функцией которой является интеграция и координация посредством генерализации собственных влияний на все биологические процессы нашего организма. Вероятность этих «взаимоотношений» понимается как значимая в пределах, характеризующих непрямую связь, но из важности функций заинтересованной системы (ЦНС) исходит необходимость учета таких влияний.
4.1.4. Эффекты воздействия пищевого протеина.
С целью составления полной картины, следует обратить внимание на, описанные в п.п. 3.4.1.-3.5.4. рефлекторные, иммунологические и эндокринные влияния белка пищи. Суммируя данные пунктов 3.4.1.-3.5.4. и 4.1.1.,4.1.2., а также для удобства рассмотрения отношений "пищевой протеин - организм" приведена краткая, сводная таблица 7, иллюстрирующая указанные отношения.
Эффекты воздействия пищевого протеина.
Таблица 7.
Молекула | Объект воздействия | Эффект воздействия |
Белок | ЦНС | Условный рефлекс на внешние качества пищевого белка, сопровождаемый определенной ассоциативной окраской |
Белок | ЭНС (метасимпатическая НС) | Безусловный рефлекс на химическиеи физические свойства пищевого белка |
Белок | Кровеносное русло, межтканевая жидкость |
|
Пептид | ЦНС | Специфический (влияние на процессы внимания, памяти, консолидации информации, сна, анти- резерпиновый, ноцицептивный и др. эффекты) |
Пептид | Кровеносное русло, межтканевая жидкость |
|
АМК | ЦНС |
|
АМК | Кровеносное русло, межтканевая жидкость |
|
АМК | АРС-азы | Пластически сориентированный синтез специфических для клетки белков (структурных, ферментов, гормонов), медиаторов (норадреналин, адреналин, дофамин, таурин) , БАВ (гистамин) |
Таким образом, можно обобщить: аминокислотный состав пищи может влиять на синтез белка, на функции ЦНС - на организменный "базис" и на систему управления - "надстройку", а следовательно, посредством такого воздействия и на фенотип организма [20; 40]. Уникальность каждого, отдельно взятого, человека выражается на разных уровнях организации: на макроуровне - в неповторимой внешности каждого индивида, на уровне микромира - в биохимическом, а также иммунологическом своеобразии. [56]. Примером биохимического «индивидуализма» является существование ряда ферментопатий, болезней «биохимии» (обмена веществ) организма, по виду и частоте встречаемости находящихся в прямой связи с принадлежностью больных к «подверженной» данной патологии обмена рассе или национальности. В подтверждение сказанному можно привести ряд примеров.
-
У 50-52 % лиц монглоидной рассы отмечается деффект митоходриальной альдегиддегидрогеназы (АльДГ) - глу 487 замещен на лиз.
-
У 10 % европейцев, 85-89 % китайцев и японцев изофермент алкогольдегидрогеназа2 (АДГ2) претерпевает мутации с образованием крайне неустойчивой формы фермента.
-
У индейцев Америки мутаций изофермента алкогольдегидрогеназы 2 (АДГ2) нет.
-
У лиц, в основном, еврейской национальности встречается деффект НАДФ+ зависимой L-ксилулозоредуктазы.
-
У лиц азиатской и африканской национальностей часто встречается приобретенная -галактозидазная недостаточность.
-
У представителей древних народов (арабов, армян, евреев) наблюдается наиболее часто встречающийся нефропатический тип наследственного амилоидоза.
-
У представителей английских семей встречается, характерный именно для них, тип семейного амилоидоза, который протекает с лихорадкой, крапивницей и глухотой.
-
У представителей русских семей встречается, характерный именно для них, тип семейного амилоидоза, который протекает с лихорадкой и аллергией.
Наличие такого разнообразного своеобразия дает возможность проявляться модификационной изменчивости, а она в свою очередь, посредством выживания индивида, способствует выживанию вида [47].