DIP_I_1 (675840), страница 3
Текст из файла (страница 3)
Дедукція (від лат. deductio — виведення) в широкому розумінні являє собою форму мислення, яка полягає в тому, що нове твердження, а точніше, висловлена в ньому думка виводиться суто логічним способом, тобто за певними правилами логічного виведення (слідування) з деяких відомих тверджень (думок).
Вперше теорія дедукції (логічного виведення) була розроблена Аристотелем. Ця теорія розвивалась, удосконалювалась з розвитком науки логіки. Особливий розвиток з урахуванням потреб математики вона одержала у вигляді теорії доведення в математичній логіці.
Дедуктивне міркування (умовивід) відрізняється від індуктивного, або міркування за аналогією достовірністю висновку, тобто в дедуктивному міркуванні висновок істинний, коли істинні всі посилки. На відмінність від індукції (неповної) і аналогії в дедуктивному міркуванні не можна одержати хибний висновок із істинних посилок. Саме тому дедуктивні міркування використовуються в математичних доведеннях (доведеннях математичних тверджень). Широке застосування дедукції в математиці зумовлено аксіоматичним методом побудови математичних теорій.
Аксіоматичний метод, по суті, являє собою своєрідний метод встановлення істинності тверджень. Це вихідні твердження, або аксіоми теорії. Істинність останніх тверджень, теорем цієї теорії, встановлюється за допомогою дедуктивних доведень, тобто всі останні твердження теорії логічно виводяться (дедукуються) з попередніх тверджень: аксіом, означень і раніше доведених теорем. Ось чому математику і називають «дедуктивною» наукою — в ній все виводиться, «дедукується» з деяких первинних (вихідних) фактів, які висловлені в аксіомах.
У практиці навчання вчитель, як правило, сам доводить у класі кожну теорему, а то й двічі або навіть тричі повторює її. Такий метод орієнтовано головним чином на запам'ятовування учнями доведень певних теорем, і навряд чи можна таким методом навчити учнів доводити. Поєднуючи ці методи з методами навчання пошуку доведення, ми навчимо їх доводити. Сам же пошук доведення, як і будь-який пошук, вимагає творчого мислення і розвиває його. Тому метод навчання пошуку доведення підвищує ефективність інтелектуального розвитку учнів, розвитку їх творчого мислення.
§2. 8 ПРОГРАМОВАНЄ НАВЧАННЯ
Поряд з усним викладом теоретичних знань, поясненням учителем способів розв’язування різних типів задач та колективним їх розв’язуванням значне місце в процесі навчання математики посідає самостійна робота учнів. До самостійної роботи відносяться не лише самостійне вивчення матеріалу, доведення теорем та розв’язування, а й робота з друкованою основою, програмоване навчання за допомогою посібників або персональних комп’ютерів, де потрібно обирати вірну відповідь з наведених 7.
У 50—60-х роках з’явилось і одержало широку популярність “програмоване навчання”, яке потім підлягало критиці. За великим і широко рекламованим піднесенням наступив деякий спад, і до цього часу навколо програмованого навчання ведуться дискусії, в процесі яких висловлюються істотно різні, часом прямо протилежні точки зору 5.
Нагадаємо, що розуміють під програмованим навчанням і розглянемо деякі особливості цього виду навчання. Термін «програмоване навчання» запозичений з термінології програмування для ЕОМ, очевидно, тому, що так само, як і в програмах для ЕОМ, розв'язання задачі подається у вигляді строгої послідовності елементарних операцій, у «навчальних програмах» матеріал, що вивчається, подається в формі строгої послідовності кадрів, кожний з яких має, як правило, порцію нового матеріалу і контрольне питання або завдання.
Програмоване навчання не відкидає принципів класичної дидактики. Навпаки, воно виникло внаслідок шукання способів, форм і методів удосконалення процесу навчання шляхом кращої реалізації цих принципів.
Програмоване навчання здійснюється за допомогою «навчальної програми», яка відрізняється від звичайного підручника тим, що вона визначає не тільки зміст, а й процес навчання 7.
Існують дві системи програмування навчального матеріалу — лінійна і «розгалужена» програми, які відрізняються між собою важливими вихідними передумовами і структурою. Можливі і комбіновані програми, які являють собою поєднання цих двох методів програмованого навчання.
За лінійною програмою навчальний матеріал полається невеликими порціями, кадрами, до яких входить, як правило, просте питання з цього матеріалу. Передбачається, що учень, уважно прочитавши цей матеріал, зможе дати безпомилкову відповідь на поставлене питання. При переході до наступного кадру учень перш за все взнає, чи правильно він відповів на питання попереднього кадру. Оскільки кожний кадр має досить невелику інформацію з нового матеріалу, то навіть простим порівнянням своєї неправильної відповіді, якщо все таки він помилився, з правильною учень швидко встановлює, де саме ним була допущена помилка.
За розгалуженою програмою навчальний матеріал розбивається на порції, які несуть більшу інформацію, ніж при лінійному програмуванні. В кінці кожного кадру учневі пропонують питання, відповідь на яке він сам не формулює, а вибирає з наведених у цьому ж кадрі декількох варіантів відповідей, з яких тільки одна правильна (метод альтернативи). Неправильні відповіді вибираються авторами програми, зрозуміло, не випадково, а з урахуванням найбільш імовірних помилок учнів. Учень, який вибрав правильну відповідь, відсилається до сторінки, на якій викладена наступна порція нового матеріалу. Учень, що вибрав неправильну відповідь, відсилається до сторінки, на якій роз'яснюється допущена помилка і пропонується повернутися до останнього кадру, щоб, уважно прочитавши ще раз викладений в ньому матеріал, вибрати правильну відповідь або ж в залежності від допущеної помилки відкрити сторінку, на якій подано додаткове пояснення незрозумілого.
Порівнюючи дві системи програмування навчального матеріалу, можна помітити, що при лінійному програмуванні учень самостійно формулює відповіді на контрольні питання, при розгалуженому він вибирає лише одну з декількох готових, уже сформульованих відповідей.
Розгалужена програма складається з урахуванням можливих помилкових відповідей учнів і з цієї точки зору вона ближче до реального процесу навчання. За розгалуженою програмою важливо те, що різних учнів вона супроводжує до засвоєння нового матеріалу різними шляхами з урахуванням їх можливостей і потреб в додаткових поясненнях і вказівках. Один учень просувається прямо від однієї порції нового матеріалу до наступної, другий — користується додатковими поясненнями, роз'ясненнями його помилкових відповідей, які свідчать про нерозуміння навчального матеріалу. Внаслідок чого і виходить, що різні учні просуваються в засвоєнні навчального матеріалу з різними індивідуальними швидкостями.
20