LEKCY (675790), страница 2
Текст из файла (страница 2)
Полученная формула утверждает, что генотипы AA и aa возникают при скрещивании с вероятностью 1/4, а генотип Aa с вероятностью 1/2. Так как генотипы AA и Aa обладают гладкими семенами, то 3/4 потомства имеют гладкие семена, а 1/4 - морщинистые семена (генотип aa).
Решим простую задачу о скрещивании генотипов Aa и aa:
Таким образом, половина генотипов будет гетерозиготными, а половина гомозиготными.
Большинство признаков генотипа контролируется более чем двумя аллелями. Такие аллели называются множественными. Такие аллели в любом непарном сочетании могут находиться в любой клетке, так как только две аллели одного гена могут одновременно присутствовать в генотипе. Такие генотипы называются диплоидными. Полиаллельными являются гены, контролирующие группы крови. Группа крови человека зависит от присутствия либо отсутствия в эритроцитах специфических белков (A и B). Существуют четыре группы крови: Группа крови A с генотипами AA и AO (группа крови содержит белок A), группа крови B с генотипами BB и BO (содержит белок B), Группа крови AB (содержит оба белка), группа крови OO (отсутствие белков A и B). Таким образом, группа крови контролируется тремя аллелями A, B, O одного гена. Аллели A и B -доминанты по отношению к O. В присутствия аллелей A и B доминантность отсутствует. Таким образом группы крови определяются шестью генотипами AA, AO, AB, BB, BO, OO.
Закон Харди- Вайнберга
В законе Харди -Вайнберга речь идет о частотах генотипов в популяциях. Этот закон сформулировали в 1908 г. независимо друг от друга английский математик Дж.Харди и австрийский врач В.Вайнберг. Рассматривалась следующая задача. Известны частоты генотипов в двухаллельной популяции в нулевом поколении. Требуется проследить изменение частот от поколения к поколению.
Двухаллельная популяция состоит из генотипов: AA, Aa, aa. Их частоты в нулевом (начальном) поколении обозначим через u(0), 2v(0), w(0). Естественно, что u(0)+2v(0)+w(0)=1. Скрещивание предполагается случайным. Удобно следить за эволюцией частот с помощью следующей схемы.
Нулевое поколение
Генотипы Частоты генотипов
AA u(0)
Aa 2v(0)
aa w(0)
Гаметы Частоты гамет
A p(0)=u(0)+v(0)
a q(0)= v(0)+w(0)
(менделевское формирование гамет)
Первое поколение
Гаметы Частоты гамет
Таким образом, частоты гамет не меняются от поколения к поколению. Дальнейшее скрещивание не меняет и частоту зигот.
Второе поколение
Частоты зигот устанавливаются в первом поколении и больше не меняются.
Закон Харди-Вайнберга состоит из следующих двух утверждений.
1. Частоты гамет (аллелей) не меняются от поколения к поколению.
2. Равновесные частоты генотипов достигаются за одно поколение. В популяции поддерживается соотношение между гомозиготными и гетерозиготными организмами:
Закон Харди-Вайнберга распространяется на любое число аллелей . Очевидно, что число гомозигот
суть m, а гетерозигот
. Общее число зигот будет
. Рассуждения для многоаллельного случая полностью аналогичны предыдущему.
Нулевое поколение
Генотипы Частоты генотипов
Гаметы Частоты гамет
Первое поколение
Гаметы Частоты гамет
Таким образом, частоты гамет не меняются от поколения к поколению. Дальнейшее скрещивание не меняет и частоту зигот.
Второе поколение
Для всех последующих поколений частоты генотипов остаются такими же: ,
. Это и есть закон Харди -Вайнберга для полиаллельного локуса.
Обсудим некоторые аспекты закона Харди -Вайнберга. В случае доминирования аллеля A над a наблюдаются лишь фенотипы {AA, Aa}, {a,a}. В силу закона Харди -Вайнберга их вероятности равны
где -частота рецессивного аллеля a.
Если рецессивный аллель -редкий ( ), то соответствующий фенотип наблюдается еще реже. Частота наблюдения альбиносов (генотип aa, он же - фенотип)
. Это - экспериментальный факт. В силу закона Харди -Вайнберга, скрытые носители рецессивного аллеля (генотип Aa) встречаются гораздо чаще:
Если доминантный аллель является редким: , то частота его проявления примерно вдвое больше:
Интересная ситуация складывается сейчас в человеческой популяции. Существуют рецессивные летальные аллели (генотип aa нежизнеспособен). Примером может служить наследственная болезнь фенилкотонурия (ФКУ). Сейчас найдены способы ее лечения. Выздоровевшие люди могут давать потомство и передавать ему аллель ФКУ. Тем самым частота летальных генов будет возрастать.
Сделаем некоторые замечания о математических аспектах закона Харди -Вайнберга. Обозначим частоты генотипов AA, Aa, aa через . Здесь
и
Эти соотношения выделяют в трехмерном пространстве треугольник. В следующем поколении частоты выражаются через частоты
по формулам:
Формулы задают отображение треугольника в себя, которое назовем оператором эволюции и обозначим через V. Закон Харди -Вайнберга означает, что
Эта формула отражает принцип стационарности, который С.Н. Бернштейн возвел в ранг закона.
Основная проблема, которой занимался С.Н. Бернштейн, - выявление всех законов наследования, подчиненных закону стационарности. Он дал ее полное решение для популяций, состоящих из трех генотипов, а также изучил некоторые случаи большего числа генотипов. Среди них пример популяции с m -аллельным геном. Пусть его аллели . Генотипы популяции:
, при этом
. Обозначим частоты генотипов в текущем поколении через
. Неотрицательные числа
очевидно удовлетворяют соотношению:
Пусть частоты генотипов в следующем поколении. Оператор эволюции имеет следующий вид:
Из закона Харди -Вайнберга для полиаллельных популяций следует, что для данного эволюционного оператора также выполнен принцип стационарности (2).
В одной из работ С.Н. Бернштейна рассматривался так называемый кадрильный закон наследования, генетическая интерпретация которого принадлежит Ю.И. Любичу. Введем два вида "женских " X, x и два вида "мужских" ген Y, y. Будем считать, что могут существовать лишь четыре генотипа: XY, xy, Xy, xY, которым присвоим номера 1, 2, 3, 4. Остальные мыслимые комбинации генов запретим. Частоты генотипов в нулевом поколении обозначим через , а в следующем -через
. Поскольку при образовании зиготы объединяется одна женская и одна мужская гаметы, то следует говорить о частотах гамет X и x среди женских и о частотах гамет Y и y среди мужских. Частоты женских гамет в нулевом поколении:
Частоты мужских гамет:
Частоты генотипов в первом поколении:
Отсюда получаем:
Данное отображение и изучал С.Н. Бернштейн. Частоты генов в первом поколении
(аналогично для других частот), т.е. сохраняются.
С.Н. Бернштейн показал неизбежность концепции гена в условиях Менделя. Сформулируем этот результат. Обозначим через вероятность появления потомка
у родителей
и
. Генотип
называется исчезающим, если появление потомка
у любой пары родителей равно нулю.
Теорема. Если в трехмерной популяции
все генотипы не исчезающие и , (при скрещивании первого со вторым получается только третий), то популяция менделевская.
Вернемся еще раз к вопросу о группах крови. В 1925 г. Ф. Бернштейн выдвинул гипотезу, что группа крови определяется тремя аллелями A, B, O одного локуса с доминированием A и B над O (в случае присутствия A и B доминантность отсутствует). Фенотипы: {AB}, {AO, AA}, {BO, BB}, {OO}. Согласно закону Харди -Вайнберга для одного трехаллельного локуса имеем:
откуда вытекает соотношение:
Для населения Японии известны следующие статистические данные:
. Экспериментальное значение величины
, что хорошо согласуется со статистическим прогнозом. Данное обстоятельство можно интерпретировать в пользу гипотезы.