84330 (675747), страница 2

Файл №675747 84330 (Курсовая работа по численным методам) 2 страница84330 (675747) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

2.2.2 Интервал .

Так как первая и вторые производные в точке, от которой мы начинаем работать имеют различные знаки, то работаем по второму варианту.

Результаты вычисления приведены в таблице.

3,0000000

4,0000000

4,0000000

-10,0000000

-0,2222222

3,0000000

3,2857143

4,0000000

-0,8746356

-0,0485909

3,0000000

3,2344498

4,0000000

-0,0423087

-0,0023505

3,0000000

3,2319959

4,0000000

-0,0019734

-0,0001096

3,0000000

3,2318815

4,0000000

-0,0000919

-0,0000051

2.2.3 Интервал .

Так как первая и вторые производные в точке, от которой мы начинаем работать имеют одинаковые знаки, то работаем по первому варианту.

Результаты вычисления приведены в таблице.

5,0000000

6,0000000

-12,0000000

4,0000000

0,6666667

5,7500000

6,0000000

-2,0156250

4,0000000

0,3359375

5,8337662

6,0000000

-0,1613014

4,0000000

0,0268836

5,8402098

6,0000000

-0,0120198

4,0000000

0,0020033

5,8406885

6,0000000

-0,0008909

4,0000000

0,0001485

5,8407240

6,0000000

-0,0000660

4,0000000

0,0000110

Итак, корнями уравнения будут , , .

2.3 Метод касательных (метод Ньютона).

В век повальной компьютеризации не есть хорошо считать при помощи логарифмической линейки. Поэтому, разработаем алгоритм и прикладную программу для решения кубических уравнений методом Ньютона.

Ниже приведена блок-схема алгоритма и листинг программы, реализующей данный алгоритм на языке С++. Также привожу текст, которая выдает данная программа при решении исходного уравнения.

//метод Ньютона длЯ решениЯ кубических уравнений

#include

#include

double a[4]={0},

b[3]={0},

c[2]={0},

prec=0.00000;

double minim=0, maxim=0;

void Hello(void);

void Input();

void Derivative();

void Calculation();

double Calc_Fun(double);

double Calc_First(double);

double Calc_Second(double);

main(void)

{

Hello();

Input();

Derivative();

Calculation();

return 0;

}

void Hello(void)

{

cout<<"Программа длЯ решениЯ кубических уравнений методом касательных (метод Ньютона).\n\n";

}

void Input()

{

cout<<"Кубическое уравнение имеет вид"<

<<"a1*x^3+a2*x^2+a3*x+a4=0"<

for (int i=0;i<4;i++)

{

cout<<"Введите значение коэффициента a["<

cin>>a[i];

}

cout<

<<"Введите нижнюю границу поиска : ";

cin>>minim;

cout<<"Введите верхнюю границу поиска : ";

cin>>maxim;

while(minim==maxim||minim>maxim)

{

cout<<"\nНижнЯЯ граница должна быть меньше верхней и не может быть ей равна."<

<<"Повторите ввод нижней границы : ";

cin>>minim;

cout<<"Повторите ввод верхней границы : ";

cin>>maxim;

}

cout<<"Введите допустимую погрешность : ";

cin>>prec;

}

void Derivative()

{

b[0]=a[0]*3;

b[1]=a[1]*2;

b[2]=a[2];

c[0]=b[0]*2;

c[1]=b[1];

cout<<"\n\n\n"

<<"Исходное уравнение имеет вид : \n\n"

<

<<"ПерваЯ производнаЯ имеет вид : \n\n"

<<"f'(x)="<

<<"ВтораЯ производнаЯ имеет вид : \n\n"

<<"f''(x)="<

}

void Calculation()

{

double x=0, m=0;

cout<<"-------------------------------------------------"<

<<"| Xn | f(Xn) | |f(Xn)|/m |"<

<<"-------------------------------------------------"<

if (abs(Calc_Fun(minim))*abs(Calc_Second(minim))>0) x=minim;

else x=maxim;

if (Calc_First(minim)>Calc_First(maxim)) m=abs(Calc_First(maxim));

else m=abs(Calc_First(minim));

cout<<"|";

cout.width(15);cout.precision(10);

cout<

cout<<"|";

cout.width(15);cout.precision(10);

cout<

cout<<"|";

cout.width(15);cout.precision(10);

cout<<(fabs(Calc_Fun(x))/m);

cout<<"|\n";

while((fabs(Calc_Fun(x))/m)>prec)

{

x=(x-(Calc_Fun(x)/Calc_First(x)));

cout<<"|";

cout.width(15);cout.precision(10);

cout<

cout<<"|";

cout.width(15);cout.precision(10);

cout<

cout<<"|";

cout.width(15);cout.precision(10);

cout<

cout<<"|\n";

}

cout<<"-------------------------------------------------";

}

double Calc_Fun(double x)

{

return (a[0]*x*x*x+a[1]*x*x+a[2]*x+a[3]);

}

double Calc_First(double x)

{

return (b[0]*x*x+b[1]*x+b[2]);

}

double Calc_Second(double x)

{

return (c[0]*x+c[1]);

}


Программа длЯ решениЯ кубических уравнений методом касательных (метод Ньютона).

Кубическое уравнение имеет вид

a1*x^3+a2*x^2+a3*x+a4=0

Введите значение коэффициента a[1] : 1

Введите значение коэффициента a[2] : -6

Введите значение коэффициента a[3] : -9

Введите значение коэффициента a[4] : 58

Необходимо указать интервал поиска решениЯ.

Введите нижнюю границу поиска : -4

Введите верхнюю границу поиска : -3

Введите допустимую погрешность : 0.00005

Исходное уравнение имеет вид :

1x^3+(-6)x^2+(-9)x+(58)=0

ПерваЯ производнаЯ имеет вид :

f'(x)=3x^2+(-12)x+(-9)

ВтораЯ производнаЯ имеет вид :

f''(x)=6x+(-12)

-------------------------------------------------

| Xn | f(Xn) | |f(Xn)|/m |

-------------------------------------------------

| -4| -66| 1.222222222|

| -3.24137931| -9.922506048| 0.183750112|

| -3.079817529| -0.40621762| 0.007522548518|

| -3.07261683|-0.000789793230|1.462580056e-05|

-------------------------------------------------


Программа длЯ решениЯ кубических уравнений методом касательных (метод Ньютона).

Кубическое уравнение имеет вид

a1*x^3+a2*x^2+a3*x+a4=0

Введите значение коэффициента a[1] : 1

Введите значение коэффициента a[2] : -6

Введите значение коэффициента a[3] : -9

Введите значение коэффициента a[4] : 58

Необходимо указать интервал поиска решениЯ.

Введите нижнюю границу поиска : 3

Введите верхнюю границу поиска : 4

Введите допустимую погрешность : 0.00005

Исходное уравнение имеет вид :

1x^3+(-6)x^2+(-9)x+(58)=0

ПерваЯ производнаЯ имеет вид :

f'(x)=3x^2+(-12)x+(-9)

ВтораЯ производнаЯ имеет вид :

f''(x)=6x+(-12)

-------------------------------------------------

| Xn | f(Xn) | |f(Xn)|/m |

-------------------------------------------------

| 3| 4| 0.4444444444|

| 3.222222222| 0.159122085| 0.01768023167|

| 3.231855174| 0.000341137633|3.790418145e-05|

-------------------------------------------------


Программа длЯ решениЯ кубических уравнений методом касательных (метод Ньютона).

Кубическое уравнение имеет вид

a1*x^3+a2*x^2+a3*x+a4=0

Введите значение коэффициента a[1] : 1

Введите значение коэффициента a[2] : -6

Введите значение коэффициента a[3] : -9

Введите значение коэффициента a[4] : 58

Необходимо указать интервал поиска решениЯ.

Введите нижнюю границу поиска : 5

Введите верхнюю границу поиска : 6

Введите допустимую погрешность : 0.00005

Исходное уравнение имеет вид :

1x^3+(-6)x^2+(-9)x+(58)=0

ПерваЯ производнаЯ имеет вид :

f'(x)=3x^2+(-12)x+(-9)

ВтораЯ производнаЯ имеет вид :

f''(x)=6x+(-12)

-------------------------------------------------

| Xn | f(Xn) | |f(Xn)|/m |

-------------------------------------------------

| 6| 4| 0.6666666667|

| 5.851851852| 0.2601229487| 0.04335382479|

| 5.840787634| 0.001413241032| 0.000235540172|

| 5.840726862|4.255405933e-08|7.092343222e-09|

-------------------------------------------------

2.4 Метод итераций. Как и для предыдущего метода, привожу блок-схему алгоритма решения и листинг программы, реализующей этот алгоритм на языке программирования С++.

//метод итераций длЯ решениЯ кубических уравнений

#include

#include

double a[4]={0},

b[3]={0},

prec=0.00000;

double minim=0, maxim=0;

void Hello(void);

void Input();

void Derivative();

void Calculation();

double Calc_Fun(double);

double Calc_First(double);

main(void)

{

Hello();

Input();

Derivative();

Calculation();

return 0;

}

void Hello(void)

{

cout<<"Программа длЯ решениЯ кубических уравнений методом итераций.\n\n";

}

void Input()

{

cout<<"Кубическое уравнение имеет вид"<

<<"a1*x^3+a2*x^2+a3*x+a4=0"<

for (int i=0;i<4;i++)

{

cout<<"Введите значение коэффициента a["<

cin>>a[i];

}

cout<

<<"Введите нижнюю границу поиска : ";

cin>>minim;

cout<<"Введите верхнюю границу поиска : ";

cin>>maxim;

while(minim==maxim||minim>maxim)

{

cout<<"\nНижнЯЯ граница должна быть меньше верхней и не может быть ей

равна." <

<<"Повторите ввод нижней границы : ";

cin>>minim;

cout<<"Повторите ввод верхней границы : ";

cin>>maxim;

}

cout<<"Введите допустимую погрешность : ";

cin>>prec;

}

void Derivative()

{

b[0]=a[0]*3;

b[1]=a[1]*2;

b[2]=a[2];

}

void Calculation()

{

double x=0, x_old=0, m=0;

cout<<"-------------------------------------------------"<

<<"| Xn | f(Xn) | X(n+1)-Xn |"<

<<"-------------------------------------------------"<

if(fabs(Calc_First(minim))>fabs(Calc_First(maxim))) m=x=x_old=minim;

else m=x=x_old=maxim;

m=fabs(1/Calc_First(m));

cout<<"|";

cout.width(15);cout.precision(10);

cout<

cout<<"|";

cout.width(15);cout.precision(10);

cout<

cout<<"| |\n";

if(Calc_First(x)>0)

{

do

{

x_old=x;

x=x_old-m*Calc_Fun(x_old);

cout<<"|";

cout.width(15);cout.precision(10);

cout<

cout<<"|";

cout.width(15);cout.precision(10);

cout<

cout<<"|";

cout.width(15);cout.precision(10);

cout<

cout<<"|\n";

}

while(( fabs( Calc_Fun(x) - Calc_Fun(x_old) ) )>prec);

}

else

{

do

{

x_old=x;

x=x_old+m*Calc_Fun(x_old);

cout<<"|";

cout.width(15);cout.precision(10);

cout<

cout<<"|";

cout.width(15);cout.precision(10);

cout<

cout<<"|";

cout.width(15);cout.precision(10);

cout<

cout<<"|\n";

}

while(( fabs( Calc_Fun(x) - Calc_Fun(x_old) ) )>prec);

}

cout<<"-------------------------------------------------";

}

double Calc_Fun(double x)

{

return (a[0]*x*x*x+a[1]*x*x+a[2]*x+a[3]);

}

double Calc_First(double x)

{

return (b[0]*x*x+b[1]*x+b[2]);

}


Программа длЯ решениЯ кубических уравнений методом итераций.

Кубическое уравнение имеет вид

a1*x^3+a2*x^2+a3*x+a4=0

Введите значение коэффициента a[1] : 1

Введите значение коэффициента a[2] : -6

Введите значение коэффициента a[3] : -9

Введите значение коэффициента a[4] : 58

Необходимо указать интервал поиска решениЯ.

Введите нижнюю границу поиска : -4

Введите верхнюю границу поиска : -3

Введите допустимую погрешность : 0.00005

-------------------------------------------------

| Xn | f(Xn) | X(n+1)-Xn |

-------------------------------------------------

| -4| -66| |

| -3.24137931| -9.922506048| 56.07749395|

| -3.127327517| -3.12093462| 6.801571427|

| -3.091454705| -1.064778438| 2.056156183|

| -3.079215872| -0.372281515| 0.6924969227|

| -3.074936774| -0.131239433| 0.241042082|

| -3.073428275| -0.04639844126| 0.08484099175|

| -3.07289496| -0.01642029825| 0.02997814301|

| -3.072706221|-0.005813178631| 0.01060711962|

| -3.072639403|-0.002058264249| 0.003754914382|

| -3.072615744|-0.000728799396| 0.001329464852|

| -3.072607367|-0.000258060628|0.0004707387678|

| -3.072604401|-9.137721784e-0|0.0001666834108|

| -3.072603351|-3.235601088e-0|5.902120696e-05|

| -3.072602979|-1.145703711e-0|2.089897377e-05|

-------------------------------------------------

П рограмма длЯ решениЯ кубических уравнений методом итераций.

Кубическое уравнение имеет вид

a1*x^3+a2*x^2+a3*x+a4=0

Введите значение коэффициента a[1] : 1

Введите значение коэффициента a[2] : -6

Введите значение коэффициента a[3] : -9

Введите значение коэффициента a[4] : 58

Необходимо указать интервал поиска решениЯ.

Введите нижнюю границу поиска : 3

Введите верхнюю границу поиска : 4

Введите допустимую погрешность : 0.00005

-------------------------------------------------

| Xn | f(Xn) | X(n+1)-Xn |

-------------------------------------------------

| 3| 4| |

| 3.222222222| 0.159122085| 3.840877915|

| 3.231062338| 0.01338370012| 0.1457383849|

| 3.231805877| 0.001151957391| 0.01223174272|

| 3.231869875|9.934183961e-05| 0.001052615552|

| 3.231875394|8.568402322e-06|9.077343728e-05|

| 3.23187587|7.390497921e-07| 7.82935253e-06|

-------------------------------------------------


Программа длЯ решениЯ кубических уравнений методом итераций.

Кубическое уравнение имеет вид

a1*x^3+a2*x^2+a3*x+a4=0

Введите значение коэффициента a[1] : 1

Введите значение коэффициента a[2] : -6

Введите значение коэффициента a[3] : -9

Введите значение коэффициента a[4] : 58

Необходимо указать интервал поиска решениЯ.

Введите нижнюю границу поиска : 5

Введите верхнюю границу поиска : 6

Введите допустимую погрешность : 0.00005

-------------------------------------------------

| Xn | f(Xn) | X(n+1)-Xn |

-------------------------------------------------

| 6| 4| |

| 5.851851852| 0.2601229487| 3.739877051|

| 5.842217669| 0.0346921878| 0.2254307609|

| 5.840932773| 0.004788677115| 0.02990351069|

| 5.840755414|0.0006639855431| 0.004124691572|

| 5.840730822|9.212373716e-05|0.0005718618059|

| 5.84072741|1.278267885e-05|7.934105832e-05|

| 5.840726937|1.773688694e-06|1.100899016e-05|

-------------------------------------------------


Решив уравнение , получили корень

Метод

Корень № 1

Корень № 2

Корень № 3

Хорд

-3,072638

3,231881

5,840724

Касательных (Ньютона)

-3,072616

3,231855

5,840726

Итераций

-3,072602

3,231875

5,840726

Для дальнейших расчетов будем использовать среднее арифметическое значение полученных корней.

3. Используя полученные значения, определим собственные значения исходной матрицы.

Собственные вектора матрицы А= определим по формуле

Для нашей матрицы, данная формула примет следующий вид

Коэффициенты определяются по схеме Горнера:

Для имеем:

Для имеем:

Для имеем:

Далее можем найти собственные векторы:

4. Для контроля полученных значений, развернем исходную матрицу А= , и определим ее собственные векторы методом непосредственного развертывания.

Характеристический многочлен для данной матрицы имеет вид:

.

Находим .

Число диагональных миноров второго порядка у матрицы второго порядка .

Выписываем эти миноры и складываем их:

.

И, в заключение, находим

Таким образом, характеристическое уравнение имеет вид

Данное уравнение идентично уравнению, полученному при помощи метода Крылова. Нет смысла заново его решать. Воспользуемся уже вычисленными корнями (их средним значением).

Определим собственный вектор , соответствующий .

, или

Из третьего уравнения системы выведем и подставим его в первое уравнение системы

Примем , тогда и .

Итак, искомый вектор матрицы , найденный с точностью до постоянного множителя , для собственного значения матрицы будет:

При помощи метода Крылова, мы получили точное значение собственного вектора .

Мы можем проверить наши вычисления, взяв :

Как видно, мы получил идентичный, до третьего знака, результат.

Определим собственный вектор , соответствующий .

, или

Из третьего уравнения системы выведем и подставим его в первое уравнение системы

Примем , тогда и .

Итак, искомый вектор матрицы , найденный с точностью до постоянного множителя , для собственного значения матрицы будет:

При помощи метода Крылова, мы получили точное значение собственного вектора .

Мы можем проверить наши вычисления, взяв :

Как видно, мы получил идентичный, до третьего знака, результат.

Определим собственный вектор , соответствующий .

, или

Из третьего уравнения системы выведем и подставим его в первое уравнение системы

Примем , тогда и .

Итак, искомый вектор матрицы , найденный с точностью до постоянного множителя , для собственного значения матрицы будет:

При помощи метода Крылова, мы получили точное значение собственного вектора .

Мы можем проверить наши вычисления, взяв :

Как видно, мы получил идентичный, до третьего знака, результат.

Характеристики

Тип файла
Документ
Размер
640,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее