84328 (675744), страница 2

Файл №675744 84328 (Курсовая Работа - Аппроксимация функций) 2 страница84328 (675744) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Если неизвестен характер зависимости между данными величинами x и y , то вид эмпирической зависимости является произвольным. Предпочтение отдается простым формулам, обладающим хорошей точностью. Удачный выбор эмпирической формулы в значительной мере зависит от знаний исследователя в предметной области, используя которые он может указать класс функций из теоретических соображений. Большое значение имеет изображение полученных данных в декартовых или в специальных системах координат (полулогарифмической, логарифмической и т.д.). По положению точек можно примерно угадать общий вид зависимости путем установления сходства между построенным графиком и образцами известных кривых.

Определение наилучших коэффициентов входящих в эмпирическую формулу производят хорошо известными аналитическими методами.

Для того, чтобы найти набор коэффициентов , которые доставляют минимум функции S , определяемой формулой (2.1.2), используем необходимое условие экстремума функции нескольких переменных - равенство нулю частных производных. В результате получим нормальную систему для определения коэффициентов :

(2.1.3)

Таким образом, нахождение коэффициентов сводится к решению системы (2.1.3).

Эта система упрощается, если эмпирическая формула (2.1.1) линейна относительно параметров , тогда система (2.1.3) - будет линейной.

Конкретный вид системы (2.1.3) зависит от того, из какого класса эмпирических формул мы ищем зависимость (2.1.1). В случае линейной зависимости система (2.1.3) примет вид:

(2.1.4)

Эта линейная система может быть решена любым известным методом (методом Гаусса, простых итераций, формулами Крамера).

В случае квадратичной зависимости система (2.1.3) примет вид:

(2.1.5)

2.2 Линеаризация экспоненциальной зависимости.

В ряде случаев в качестве эмпирической формулы берут функцию в которую неопределенные коэффициенты входят нелинейно. При этом иногда задачу удается линеаризовать, т.е. свести к линейной. К числу таких зависимостей относится экспоненциальная зависимость

(2.2.1)

где и неопределенные коэффициенты.

Линеаризация достигается путем логарифмирования равенства (2.2.1), после чего получаем соотношение

(2.2.2)

Обозначим и соответственно через и , тогда зависимость (2.2.1) может быть записана в виде , что позволяет применить формулы (2.1.4) с заменой на и на .

2.3 Элементы теории корреляции.

График восстановленной функциональной зависимости по результатам измерений называется кривой регрессии. Для проверки согласия построенной кривой регрессии с результатами эксперимента обычно вводят следующие числовые характеристики: коэффициент корреляции (линейная зависимость), корреляционное отношение и коэффициент детерминированности. При этом результаты обычно группируют и представляют в форме корреляционной таблицы. В каждой клетке этой таблицы приводятся численности тех пар , компоненты которых попадают в соответствующие интервалы группировки по каждой переменной. Предполагая длины интервалов группировки (по каждой переменной) равными между собой, выбирают центры (соответственно ) этих интервалов и числа в качестве основы для расчетов.

Коэффициент корреляции является мерой линейной связи между зависимыми случайными величинами: он показывает, насколько хорошо в среднем может быть представлена одна из величин в виде линейной функции от другой.

Коэффициент корреляции вычисляется по формуле:

, (2.3.1)

где , и  среднее арифметическое значение соответственно по x и y.

Коэффициент корреляции между случайными величинами по абсолютной величине не превосходит 1. Чем ближе к 1, тем теснее линейная связь между x и y.

В случае нелинейной корреляционной связи условные средние значения располагаются около кривой линии. В этом случае в качестве характеристики силы связи рекомендуется использовать корреляционное отношение, интерпретация которого не зависит от вида исследуемой зависимости.

Корреляционное отношение вычисляется по формуле:

, (2.3.2)

где , а числитель характеризует рассеяние условных средних около безусловного среднего .

Всегда . Равенство соответствует некоррелированным случайным величинам; тогда и только тогда, когда имеется точная функциональная связь между y и x. В случае линейной зависимости y от x корреляционное отношение совпадает с квадратом коэффициента корреляции. Величина используется в качестве индикатора отклонения регрессии от линейной.

Корреляционное отношение является мерой корреляционной связи y с x в какой угодно форме, но не может дать представления о степени приближенности эмпирических данных к специальной форме. Чтобы выяснить насколько точно построенная кривая отражает эмпирические данные вводится еще одна характеристика  коэффициент детерминированности.

Для его описания рассмотрим следующие величины. - полная сумма квадратов, где среднее значение .

Можно доказать следующее равенство

.

Первое слагаемое равно и называется остаточной суммой квадратов. Оно характеризует отклонение экспериментальных данных от теоретических.

Второе слагаемое равно и называется регрессионной суммой квадратов и оно характеризует разброс данных.

Очевидно, что справедливо следующее равенство .

Коэффициент детерминированности определяется по формуле:

. (2.3.3)

Чем меньше остаточная сумма квадратов по сравнению с общей суммой квадратов, тем больше значение коэффициента детерминированности , который показывает, насколько хорошо уравнение, полученное с помощью регрессионного анализа, объясняет взаимосвязи между переменными. Если он равен 1, то имеет место полная корреляция с моделью, т.е. нет различия между фактическим и оценочным значениями y. В противоположном случае, если коэффициент детерминированности равен 0, то уравнение регрессии неудачно для предсказания значений y.

Коэффициент детерминированности всегда не превосходит корреляционное отношение. В случае когда выполняется равенство то можно считать, что построенная эмпирическая формула наиболее точно отражает эмпирические данные.

3. Расчет коэффициентов аппроксимации в Microsoft Excel.

Вариант №22

Функция y=f(x) задана таблицей 1

Таблица 1

Исходные данные.

12.85

154.77

9.65

81.43

7.74

55.86

5.02

24.98

1.86

3.91

12.32

145.59

9.63

80.97

7.32

47.63

4.65

22.87

1.76

3.22

11.43

108.37

9.22

79.04

7.08

48.03

4.53

20.32

1.11

1.22

10.59

100.76

8.44

61.76

6.87

36.85

3.24

9.06

0.99

1.10

10.21

98.32

8.07

60.54

5.23

25.65

2.55

6.23

0.72

0.53

Требуется выяснить - какая из функций - линейная, квадратичная или экспоненциальная наилучшим образом аппроксимирует функцию заданную таблицей 1.

Решение.

Поскольку в данном примере каждая пара значений встречается один раз, то между и существует функциональная зависимость.

Для проведения расчетов данные целесообразно расположить в виде таблицы 2, используя средства табличного процессора Microsoft Excel.

Таблица 2

Р
асчет сумм.

Поясним как таблица 2 составляется.

Характеристики

Тип файла
Документ
Размер
1,31 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6979
Авторов
на СтудИзбе
262
Средний доход
с одного платного файла
Обучение Подробнее