84328 (675744), страница 2
Текст из файла (страница 2)
Если неизвестен характер зависимости между данными величинами x и y , то вид эмпирической зависимости является произвольным. Предпочтение отдается простым формулам, обладающим хорошей точностью. Удачный выбор эмпирической формулы в значительной мере зависит от знаний исследователя в предметной области, используя которые он может указать класс функций из теоретических соображений. Большое значение имеет изображение полученных данных в декартовых или в специальных системах координат (полулогарифмической, логарифмической и т.д.). По положению точек можно примерно угадать общий вид зависимости путем установления сходства между построенным графиком и образцами известных кривых.
Определение наилучших коэффициентов
входящих в эмпирическую формулу производят хорошо известными аналитическими методами.
Для того, чтобы найти набор коэффициентов
, которые доставляют минимум функции S , определяемой формулой (2.1.2), используем необходимое условие экстремума функции нескольких переменных - равенство нулю частных производных. В результате получим нормальную систему для определения коэффициентов
:
Таким образом, нахождение коэффициентов
сводится к решению системы (2.1.3).
Эта система упрощается, если эмпирическая формула (2.1.1) линейна относительно параметров
, тогда система (2.1.3) - будет линейной.
Конкретный вид системы (2.1.3) зависит от того, из какого класса эмпирических формул мы ищем зависимость (2.1.1). В случае линейной зависимости
система (2.1.3) примет вид:
Эта линейная система может быть решена любым известным методом (методом Гаусса, простых итераций, формулами Крамера).
В случае квадратичной зависимости
система (2.1.3) примет вид:
2.2 Линеаризация экспоненциальной зависимости.
В ряде случаев в качестве эмпирической формулы берут функцию в которую неопределенные коэффициенты входят нелинейно. При этом иногда задачу удается линеаризовать, т.е. свести к линейной. К числу таких зависимостей относится экспоненциальная зависимость
(2.2.1)
где
и
неопределенные коэффициенты.
Линеаризация достигается путем логарифмирования равенства (2.2.1), после чего получаем соотношение
(2.2.2)
Обозначим
и
соответственно через
и
, тогда зависимость (2.2.1) может быть записана в виде
, что позволяет применить формулы (2.1.4) с заменой
на
и
на
.
2.3 Элементы теории корреляции.
График восстановленной функциональной зависимости
по результатам измерений
называется кривой регрессии. Для проверки согласия построенной кривой регрессии с результатами эксперимента обычно вводят следующие числовые характеристики: коэффициент корреляции (линейная зависимость), корреляционное отношение и коэффициент детерминированности. При этом результаты обычно группируют и представляют в форме корреляционной таблицы. В каждой клетке этой таблицы приводятся численности
тех пар
, компоненты которых попадают в соответствующие интервалы группировки по каждой переменной. Предполагая длины интервалов группировки (по каждой переменной) равными между собой, выбирают центры
(соответственно
) этих интервалов и числа
в качестве основы для расчетов.
Коэффициент корреляции является мерой линейной связи между зависимыми случайными величинами: он показывает, насколько хорошо в среднем может быть представлена одна из величин в виде линейной функции от другой.
Коэффициент корреляции вычисляется по формуле:
, (2.3.1)
где
,
и
среднее арифметическое значение соответственно по x и y.
Коэффициент корреляции между случайными величинами по абсолютной величине не превосходит 1. Чем ближе
к 1, тем теснее линейная связь между x и y.
В случае нелинейной корреляционной связи условные средние значения располагаются около кривой линии. В этом случае в качестве характеристики силы связи рекомендуется использовать корреляционное отношение, интерпретация которого не зависит от вида исследуемой зависимости.
Корреляционное отношение вычисляется по формуле:
где
, а числитель характеризует рассеяние условных средних
около безусловного среднего
.
Всегда
. Равенство
соответствует некоррелированным случайным величинам;
тогда и только тогда, когда имеется точная функциональная связь между y и x. В случае линейной зависимости y от x корреляционное отношение совпадает с квадратом коэффициента корреляции. Величина
используется в качестве индикатора отклонения регрессии от линейной.
Корреляционное отношение является мерой корреляционной связи y с x в какой угодно форме, но не может дать представления о степени приближенности эмпирических данных к специальной форме. Чтобы выяснить насколько точно построенная кривая отражает эмпирические данные вводится еще одна характеристика коэффициент детерминированности.
Для его описания рассмотрим следующие величины.
- полная сумма квадратов, где
среднее значение
.
Можно доказать следующее равенство
.
Первое слагаемое равно
и называется остаточной суммой квадратов. Оно характеризует отклонение экспериментальных данных от теоретических.
Второе слагаемое равно
и называется регрессионной суммой квадратов и оно характеризует разброс данных.
Очевидно, что справедливо следующее равенство
.
Коэффициент детерминированности определяется по формуле:
Чем меньше остаточная сумма квадратов по сравнению с общей суммой квадратов, тем больше значение коэффициента детерминированности
, который показывает, насколько хорошо уравнение, полученное с помощью регрессионного анализа, объясняет взаимосвязи между переменными. Если он равен 1, то имеет место полная корреляция с моделью, т.е. нет различия между фактическим и оценочным значениями y. В противоположном случае, если коэффициент детерминированности равен 0, то уравнение регрессии неудачно для предсказания значений y.
Коэффициент детерминированности всегда не превосходит корреляционное отношение. В случае когда выполняется равенство
то можно считать, что построенная эмпирическая формула наиболее точно отражает эмпирические данные.
3. Расчет коэффициентов аппроксимации в Microsoft Excel.
Вариант №22
Функция y=f(x) задана таблицей 1
Таблица 1
Исходные данные.
|
|
|
|
|
|
|
|
|
|
|
| 12.85 | 154.77 | 9.65 | 81.43 | 7.74 | 55.86 | 5.02 | 24.98 | 1.86 | 3.91 |
| 12.32 | 145.59 | 9.63 | 80.97 | 7.32 | 47.63 | 4.65 | 22.87 | 1.76 | 3.22 |
| 11.43 | 108.37 | 9.22 | 79.04 | 7.08 | 48.03 | 4.53 | 20.32 | 1.11 | 1.22 |
| 10.59 | 100.76 | 8.44 | 61.76 | 6.87 | 36.85 | 3.24 | 9.06 | 0.99 | 1.10 |
| 10.21 | 98.32 | 8.07 | 60.54 | 5.23 | 25.65 | 2.55 | 6.23 | 0.72 | 0.53 |
Требуется выяснить - какая из функций - линейная, квадратичная или экспоненциальная наилучшим образом аппроксимирует функцию заданную таблицей 1.
Решение.
Поскольку в данном примере каждая пара значений
встречается один раз, то между
и
существует функциональная зависимость.
Для проведения расчетов данные целесообразно расположить в виде таблицы 2, используя средства табличного процессора Microsoft Excel.
Таблица 2
Поясним как таблица 2 составляется.
















