Trigonom (675719), страница 2
Текст из файла (страница 2)
y
y=sinx
1
0 30 60 90 x
Рис.4.
Основные соотношения между тригонометрическими функциями острого угла
Для прямоугольного треугольника в соответствии с теоремой Пифагора
a2+b2=c2
По определению тогда
(1)
Легко также найти следующие зависимости
(2)
(4)
(5)
И
з соотношений (1)-(5), которые называют основными, можно вывести и другие вспомогательные соотношения, например:
(8)
Соотношения (1)-(8) связывают все тригонометрические ф
ункции так, что по значению одной из них для данного острого угла можно найти значения всех остальных функций для этого же угла.
Тригонометрические функции произвольного угла
П
усть в прямоугольной системе координат x0y задан радиус-вектор образующий с положительным направлением оси 0x угол . Будем считать, что ось 0x – начальная сторона, а вектор - конечная сторона угла . Проекция вектора на координатные оси соответственно обозначим ax и ay.
М
ожно показать, что отношения где а – длина вектора , зависят только от
в
еличины угла и не зависят от длины вектора . Поэтому эти отношения можно рассматривать как функции произвольного угла .
Синусом угла ,образованного осью 0x и произвольным радиусом-вектором , называется отношение проекции этого вектора на ось 0y к его длине:
y
A
ay
ax 0
xРис. 6.
Е
сли не указано сколько оборотов совершил вектор вокруг точки 0, то положение вектора определяет угол с точностью до целого оборота, т.е углу с начальной стороной 0x и конечной стороной соответствует бесчисленное множество углов, которые выражаются формулой
360n+, где n=0; 1; 2; 3; 4; …
и sin(+360 n)=sin
Длина радиуса-вектора всегда число положительное. Проекция его на координатные оси величины алгебраические и в зависимости от координатных четвертей имеют следующие знаки:
В
I четверти ax>0; ay>0;
Во II четверти ax<0; ay>0;
В III четверти ax<0; ay <0;
В IV четверти ax>0; ay<0/
График функции y=sinx
До сих пор аргументами тригонометрических функций рассматривались именованные величины – углы (дуги), измеренные в градусах или радианах. Значения тригонометрических функций, как отношения отрезков, являются абстрактными величинами (числами). При изучении свойств тригонометрических функций приходится сравнивать изменения функции в связи с изменениями аргумента, а сравнивать можно только однородные или, что еще лучше, абстрактные величины.
Кроме того, введение тригонометрических функций от абстрактного аргумента дает возможность применять эти функции в различных вопросах математики, физики, техники и т.д.
В
место именованного значения аргумента тригонометрических функций в x (радианов) будем рассматривать абстрактное число где r обозначает радианы, ии по определению принять что
sinx, где x – абстрактное число, равен sinx, где x измерен в радианах.
Тригонометрические функции являются периодическими, то есть существует число а, отличное от 0, такое, что при любом целом nтождественно выполняется равенство:
f(x+na)=f(x), n=0; 1; 2 ...
Число а называется периодом функции. Период функции sinx равен 2. Для нее имеет место формула:
sin(x+2n)= sinx, где n=0; 1; 2 ...
График функции y=sinx называют синусоидой. Для построения графика можно взять значения аргумента x с определенным интервалом и составить таблицу значений y=sinx, соответствующих выбранным значениям x, а затем по точкам, как это часто делается в алгебре, построить график.
С
троим в системе координат x101y1 единичную окружность R=1 с центром 01 на оси абсцисс x1. Дугу этой окружности начиная от точки начиная от точки оси абсцисс x1 =+1, делим на n равных частей:
З
атем строим вторую систему координат x0y, ось которой 0x совпадает с осью 01 x1 , но сначало координат 01(x1 =0) и 0(x=0) у етих систем различные. В новой системе координат отрезок оси абсцисс от x=0 до x=2 делим на n равных частей: Из точек деления окружности проводим прямые параллельные оси 0x, а из точек деления отрезка [0, 2] проводим прямые, перпендикулярные этой осм. Точки пересечения соответствующих прямых будут точками графика y=sinx, так как ординаты этихточек равны значениям синуса, соответствующим значениям аргумента в точках деления отрезка [0, 2].
Рис.8.
Некоторые свойства функции y=sinx
1. Непрерывность.
Функция y=sinx существует при всех действительных значения x, причем, график ее является сплошной кривой линией (без разрывов), т.е. функция sinx непрерывна.
2. Четность, нечетность.
Функция y=sinx нечетная и ее график симметричный относительно начала координат.
3. Наибольшие и наименьшие значения.
Все возможные значения функции sinx ограничены неравенствами
причем sinx=+1, если
и sinx=-1, если
4.Нулевые значения (точки пересечения графика функции с осью абсцисс).
sinx=0, если x=n (n=0; 1; 2;…).
5. Интервалы возрастания и убывания.
Функция возрастает, т.е. большему значению аргумента соответствует большее значение функции на интервалах
(n=0; 1; 2;…).
И убывает, т.е. большему значению аргумента соответствует меньшее значение функции на интервалах
(n=0; 1; 2;…).
0>0>0>0>














