3 (675636), страница 2

Файл №675636 3 (Билеты по аналитической геометрии) 2 страница3 (675636) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Выразим эксцентриситеты через а и b:

е эллипса является мерой его «вытянутости»

е гиперболы характеризует угол раствора между асимптотами

2. Директрисой D эллипса (гиперболы), соответствующей фокусу F, называется прямая расположенная в полуплоскости  перпендикулярно большой оси эллипса и отстоящий от его центра на расстоянии а/е>a (а/е

D1: x= - a/e

D2: x= a/e

р=а(1-е2)/е – для эллипса

р=а(е2-1)/е – для гиперболы

ТЕОРЕМА ОБ ОТНОШЕНИИ РАССТОЯНИЙ. 2-ОЕ ОПРЕДЕЛЕНИЕ ЭЛЛИПСА, ГИПЕРБОЛЫ, ПАРАБОЛЫ.

Теорема: Отношение расстояния любой точки эллипса (гиперболы) до фокуса к расстоянию от нее до соответствующей директрисы есть величина постоянная равная е эллипса (гиперболы).

Доказательство: для эллипса.

r1/d1=e

x|a|, xe+a>0

r1=xe+a

d1 – расстояние от М(x,y) до прямой D1

xcos180+ysin180-p=0

x=-p

x=-a/e

бм=-x-a/e

d1=-бм (минус, т.к. прямая и точка по одну стороно о начала коорд.)

Определение: ГМТ на плоскости, отношение расстояния от которых до фокуса, к расстоянию до соответствующей директрисы есть величина постоянная и представляет собой эллипс, если <1, гиперболу, если >1, параболу, если =1.

ПОЛЯРНОЕ УРАВНЕНИЕ ЭЛЛИПСА, ГИПЕРБОЛЫ, ПАРАБОЛЫ.

Пусть задан эллипс, парабола или правая ветвь гиперболы.

Пусть задан фокус этих кривых. Поместим полюс полярной системы в фокус кривой, а полярную ось совместим с осью симметрии, на которой находится фокус.

r= 

d=p+cos

e=/p+cos

- полярное уравнение эллипса, параболы и правой ветви гиперболы.

КАСАТЕЛЬНАЯ К КРИВОЙ 2-ГО ПОРЯДКА.

Пусть задан эллипс в каноническом виде. Найдем уравнение касательной к нему, проходящей через М0(x0;y0) – точка касания, она принадлежит эллипсу значит справедливо:

у-у0=y’(x0)(x-x0)

Рассмотрим касательную к кривой следовательно

ya2y0-a2y02+b2x0x-b2x02=0

- уравнение касательной к эллипсу.

- уравнение касательной к гиперболе.

- уравнение касательной к параболе.

ПРЕОБРАЗОВАНИЕ ДЕКАРТОВЫХ ПРЯМОУГОЛЬНЫХ КООРДИНАТ НА ПЛОСКОСТИ.

Преобразование на плоскости есть применение преобразований параллельного переноса и поворота.

Пусть две прямоугольные системы координат имеют общее начало. Рассмотрим все возможные скалярные произведения базисных векторов двумя способами:

11’)=cos u

12’)=cos (90+u)= -sin u

21’)=cos (90-u)=sin u

22’)=cos u

Базис рассматривается ортонормированный:

11’)=(е1, 11е1+12е2)= 11

12’)= (е1, 21е1+22е2)= 21

21’)= 12

22’)= 22

Приравниваем:

11=cos u

21= - sin u

12=sin u

22=cos u

Получаем:

x=a+x’cos u – y’sin u

y=b+x’sin u – y’cos u - формулы поворота системы координат на угол u.

------------

x=a+x’

y=b+y’ - формулы параллельного переноса

ИНВАРИАНТЫ УРАВНЕНИЯ ЛИНИЙ 2-ГО ПОРЯДКА.

Определение: Инвариантой ур-я (1) линии второго порядка относительно преобразования системы координат, называется функция зависящая от коэффициентов ур-я (1) и не меняющая своего значения при преобразовании системы координат.

Теорема: инвариантами уравнения (1) линии второго порядка относительно преобразования системы координат являются следующие величины: I1; I2; I3

Вывод: при преобразовании системы координат 3 величины остаются неизменными, поэтому они характеризуют линию.

Определение:

I2>0 – элиптический тип

I2<0 – гиперболический тип

I2=0 – параболический тип

ЦЕНТР ЛИНИИ 2-ГО ПОРЯДКА.

Пусть задана на плоскости линия уравнением (1).

Параллельный перенос:

Параллельно перенесем систему XOY на вектор OO’ т.о. что бы в системе X’O’Y’ коэфф. при x’ и y’ преобразованного уравнения кривой оказались равными нулю. После этого:

a11x’2+2a12x’y’+a22y’2+a’33=0 (2)

точка О’ находится из условия: a13’=0 и a23’=0.

Получается система a11x0+a12y0+a13=0 и a12x0+a22y0+a23=0

Покажем, что новое начало координат (если система разрешима) является центром симметрии кривой: f(x’;y’)=0, f(-x’;-y’)= f(x’;y’)

Но точка О’ существует если знаменатели у x0 и y0 отличны от нуля.

Точка O’ – единственная точка.

Центр симметрии кривой существует если I20 т.е. центр симметрии имеют линии элиптического и гиперболического типа

Поворот:

Пусть система XOY повернута на угол u. В новой системе координат уравнение не содержит члена с x’y’ т.е. мы делаем коэфф. а12=0. a12’= -0,5(a11-a22)sin2u+a12cos2u=0 (разделим на sin2u), получим:

, после такого преобразования уравнение принимает вид

a11’x’2+a22’y’2+2a13’x’+2a23’y’+a33’=0 (3)

Характеристики

Тип файла
Документ
Размер
258,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее