8698-1 (675558), страница 2

Файл №675558 8698-1 (Теория Рамсея) 2 страница8698-1 (675558) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Эрдёш всё же нашёл способ получить некоторое представление о том, насколько большим должно быть число Рамсея. Что если он сможет найти красно-синюю раскраску большой полной сети, не содержащую ни красной, ни синей сети из трёх точек? Такая раскраска полной сети из пяти точек показана на рис.2. Отсюда следует, что число Рамсея для трёх красных и трёх синих должно быть больше пяти. Пять есть нижняя граница для этого числа Рамсея.

В 1947году Эрдёш предложил необычный метод отыскания нижней границы любого числа Рамсея: бросание монеты. Он предпринял мысленный эксперимент, в котором каждое ребро полной сети из, скажем, миллиона точек окрашивалось в соответствии с результатом бросания «настоящей» монеты (т.е. монеты, для которой вероятность выпадения орла или решки строго одинакова и равна 1/2. — Перев.). Ребро окрашивается в красный цвет, если выпадает решка, и в синий, если выпадает орёл. Затем он попытался доказать, что число Рамсея, скажем, для 34 красных и 34 синих больше миллиона. Эксперимент считается успешным, если в результате такой случайной раскраски не образуется ни красной, ни синей сети из 34 точек.

Как бы он мог гарантировать успех? Любые 34 точки соединяются 561 ребром. Если первое бросание предписывает синий цвет для первого ребра, то для получения синей сети необходимо, чтобы следующие 560 бросаний тоже предписывали синий цвет. Вероятность того, что это произойдёт, равна 2–561. Вероятность появления красной сети точно такая же, так что общая вероятность возникновения одноцветной сети вдвое больше, или примерно 2,6×10–169.

Теперь вспомним, что число наборов из 34 точек, выбранных из миллиона точек, равно

1000000!

34! · 999966!

≈3,4×10165.

Тем самым можно ожидать, что из всех возможных полных сетей из 34 точек одноцветными будут 3,4×10165×2,6×10–169, или приблизительно 0,001. Итак, в 99,9% случаев мысленный эксперимент будет успешным, одноцветные наборы из 34 точек не возникнут.

Затем Эрдёш применил тонкое доказательство от противного. Он предположил, что никакая схема раскраски не является успешной. Тогда мысленный эксперимент будет иметь нулевую вероятность успеха, что, как ему уже известно, не соответствует действительности. Значит, это предположение должно быть ошибочным, т.е. должна существовать успешная схема раскраски (не с вероятностью 99,9%, а с абсолютной достоверностью). Существование такой раскраски означает, что один миллион является нижней границей для 34 красных и 34 синих.

Такое рассуждение, известное как вероятностный метод, даёт наилучшие нижние оценки для чисел Рамсея. Однако этот метод не содержит никаких указаний на то, как в действительности следует производить желаемую раскраску. В попытках получить такие раскраски исследователи используют богатый арсенал приёмов из теории чисел, теории множеств и других разделов математики. Хотя полученные при этом результаты интересны, они пока не достигают оценок, которые даёт метод бросания монеты.

Значительная часть ранних исследований по теории Рамсея была посвящена множествам точек и линий, но всё же во многих из них рассматривались и множества чисел. Голландский математик Бартель Л.Ван дер Варден начал решать такие задачи ещё до того, как Рамсей доказал свою теорему.

В 1926 году Ван дер Варден встретился с интересной задачей, связанной с арифметическими прогрессиями. Как следует из самого названия, арифметическая прогрессия — это такая последовательность чисел, в которой разность между двумя соседними членами остаётся постоянной. Например, последовательность 3, 5, 7 есть трёхчленная арифметическая прогрессия, в которой разность между соседними членами равна двум. Частный случай задачи, привлёкшей внимание Ван дер Вардена, можно сформулировать так. Если каждое целое число от 1 до 9 напечатать на странице одной из двух красок, красной или синей, то всегда ли найдутся три синих или три красных числа, образующие арифметическую прогрессию? Ответ даётся в следующей врезке.

Теория Рамсея и арифметические прогрессии

Арифметическая прогрессия — это последовательность чисел, в которой разность между соседними членами остаётся постоянной. Например, 7, 10, 13, 16 — это арифметическая прогрессия, в которой разность между соседними членами равна трём. Из теории Рамсея следует такое утверждение об арифметических прогрессиях: если каждое число от 1 до 9 покрасить в красный или синий цвет, то либо три синих числа, либо три красных образуют арифметическую прогрессию.

Чтобы доказать это утверждение, мы могли бы проверить все 512 способов раскраски девяти чисел. Но мы можем доказать его, рассмотрев только два случая. Начнём со случая, в котором 4 и 6 имеют одинаковый цвет, скажем синий.

1 2 3 4 5 6 7 8 9

Чтобы избежать синей арифметической прогрессии 4, 5, 6, мы покрасим 5 в красный цвет.

1 2 3 4 5 6 7 8 9

Чтобы избежать синих арифметических прогрессий 2, 4, 6 и 4, 6, 8, мы покрасим 2 и 8 в красный цвет.

1 2 3 4 5 6 7 8 9

Но тогда у нас получится красная арифметическая прогрессия 2, 5, 8. Итак, если 4 и 6 имеют одинаковый цвет, то всегда получится либо красная, либо синяя арифметическая прогрессия. Теперь рассмотрим случай, когда 4 и 6 имеют различный цвет. Число 5 можно покрасить как угодно, не создав при этом арифметической прогрессии, так что мы произвольно покрасим 5 в красный цвет.

1 2 3 4 5 6 7 8 9

Продолжим раскрашивание следующим образом:

3, чтобы избежать 3 4 5

9, чтобы избежать 3 6 9

7, чтобы избежать 5 7 9

8, чтобы избежать 6 7 8

2, чтобы избежать 2 5 8

1, чтобы избежать 1 2 3

Такое раскрашивание даёт последовательность

1 2 3 4 5 6 7 8 9

Но в ней всё равно осталась красная арифметическая прогрессия 1, 5, 9. Таким образом, независимо от того, в одинаковый или в разные цвета окрашены 4 и 6, всегда имеется либо синяя, либо красная арифметическая прогрессия.

Ван дер Варден поставил перед собой следующую задачу, являющуюся обобщением предыдущей: доказать, что если n — достаточно большое число и все целые числа от 1 до n напечатаны на странице одним из двух произвольно выбираемых для каждой цифры цветов, то всегда существует одноцветная последовательность с определённым числом членов, являющаяся арифметической прогрессией. Это утверждение можно считать теоремой Рамсея для арифметических последовательностей, хотя оно общеизвестно под названием теоремы Ван дер Вардена.

Ван дер Варден призвал на помощь своих коллег Эмиля Артина и Отто Шрейера. Позднее он писал: «Мы пришли в кабинет Артина на факультет математики Гамбургского университета и попытались найти доказательство. Мы рисовали на доске какие-то рисунки. У нас было состояние, которое немцы называют Einfälle (озарение), когда в голову приходят неожиданные идеи. Несколько раз такие новые идеи направляли обсуждение в новое русло, и одна из них в конце концов привела к решению». Оказалось, однако, что Ван дер Варден не смог доказать этот результат для двух красок, не доказав его для случая, когда одновременно используется произвольное число красок.

В своём доказательстве Ван дер Варден применил особый вид математической индукции. Обычная (одинарная) индукция включает в себя два этапа. На первом этапе нужно показать, что утверждение выполняется для некоторого малого числа, скажем, для двух. На втором этапе доказывается, что если утверждение справедливо для какого-либо числа, то оно справедливо и для числа, на единицу большего. Отсюда следует, что оно верно для трёх, четырёх и так далее. Результаты «идут в руки» один за другим как бесконечная очередь падающих костяшек домино, поставленных на ребро: если столкнуть одну, то упадут все.

Чтобы доказать теорему Рамсея для арифметических прогрессий, Ван дер Варден применил более тонкую, двойную индукцию. Он предположил, что для любого фиксированного числа красок существует число n, такое, что если каждое целое число в интервале от одного до n напечатать какой-нибудь из этих красок, то найдётся арифметическая прогрессия чисел одного цвета, состоящая, скажем, из 10 членов. Опираясь на это допущение, он смог показать, что для любого фиксированного набора красок существует число m, такое, что если каждое целое число в интервале от 1 до m напечатать какой-нибудь из этих красок, то будет существовать одноцветная арифметическая прогрессия из 11 членов. В общем, он показал, что из результатов для k членов и любого количества красок вытекает результат для k+1 членов и любого количества красок.

После того как Ван дер Варден добрался до этой стадии доказательства, ему осталось только продемонстрировать, что его предположение действительно верно для некоторого малого значения k. Если целых чисел на единицу больше, чем красок, то всегда найдутся два числа одного цвета. Эти два числа образуют арифметическую прогрессию из двух членов. Поэтому одноцветная арифметическая прогрессия всегда существует, если чисел на единицу больше, чем красок. Бесконечная последовательность фишек домино для двух членов теперь сталкивает бесконечную последовательность домино для трёх членов, которая, в свою очередь, сталкивает бесконечную последовательность домино для четырёх членов, и так далее (см. следующую врезку).

Теория Рамсея и игра «крестики-нолики»

В 1926году Бартель Л. Ван дер Варден доказал, что если n — достаточно большое число и если все числа от 1 до n произвольным образом раскрасить каким-нибудь из двух цветов, то всегда найдётся одноцветная арифметическая прогрессия с определённым числом членов. В 1963году А.Хейлз и Р.Джуитт открыли то, что оказалось сутью теоремы Ван дер Вардена, изучая игру «крестики-нолики». Хотя классический вариант этой игры с игровым полем размером три на три может быстро наскучить, трёхмерный вариант с четырьмя полями в каждом ряду весьма интересен. «Доской» для трёхмерной игры служит куб, разбитый на 64 ячейки. Игроки по очереди заполняют ячейки крестиками или ноликами, пока один из них не выигрывает, заполнив четыре ячейки, расположенные на одной прямой. И двумерная, и трёхмерная игра порой кончается ничьей. А как обстоит дело в случае игр более высокой размерности? Можно ли гарантировать выигрыш в некотором n-мерном варианте крестиков и ноликов с k элементами на одной прямой?

Хейлз и Джуитт показали, что если размерность n достаточно велика, то всегда можно найти вариант игры с k элементами на одной прямой, который никогда не кончается ничьёй. Например, независимо от того, как расположены крестики и нолики в трёхмерной игре с тремя элементами в ряду, всегда либо три крестика будут расположены на одной прямой, либо три нолика.

Теорему Ван дер Вардена можно вывести из результата Хейлза и Джуитта, применив преобразование, переводящее прямые этой игры в арифметические прогрессии. Рассмотрим трёхмерную игру с тремя элементами в ряду.

Координаты крестиков в этой выигрышной комбинации суть 121, 222 и 323; рассматриваемые как числа, они образуют арифметическую прогрессию. Можно показать, что всякая выигрышная комбинация, преобразованная этим методом, даёт арифметическую прогрессию.

1

1

2 ×

3

1 2 3

2

1

2 ×

3

1 2 3

3

1

2 ×

3

1 2 3

Доказав теорему Рамсея для арифметических прогрессий, Ван дер Варден применил эти знания к решению следующей задачи. Каково наименьшее значение n, гарантирующее существование одноцветной арифметической последовательности из, скажем, 10 членов, если каждое число от 1 до n напечатать любой произвольно выбранной из двух красок? Лучший ответ, который Ван дер Варден смог найти, выражался столь большим числом, что его невозможно было записать в обычном виде. Оно было больше миллиарда, больше чем 10 в степени миллиард.

В самом деле, чтобы выразить его результат, математики прибегают к последовательности функций, известной как иерархия Аккермана. Первая функция в этой иерархии называется просто DOUBLE(x). Как подсказывает название (double — значит, удвоить), эта функция удваивает значение x. Так DOUBLE(1) равно 2, DOUBLE(50) равно 100. Вторая функция, EXPONENT(x), может быть описана как 2 в степени x, и, следовательно, EXPONENT(3) равно 8. Можно также выразить EXPONENT через DOUBLE. Например, чтобы найти EXPONENT(3), мы удваиваем 1, затем удваиваем результат предыдущего действия и затем снова удваиваем результат. На самом деле любая функция в иерархии Аккермана определяется через предыдущую.

Итак, третью функцию этой иерархии, TOWER(x), можно выразить с помощью функции EXPONENT. TOWER(3), например, — это 2 в степени 2 в степени 2, что равно 2 в степени 4, т.е. 16. TOWER(x) иногда записывают в виде «башни» (tower — значит, башня) показателей степеней,

2...2

2

2

где x — число двоек в этой башне. Но даже функция TOWER(x) растёт недостаточно быстро, чтобы можно было записать результат Ван дер Вардена.

Следующую функцию, известную под шуточным прозвищем WOW(x) (английское междометие WOW примерно соответствует русским «Ой!», «Ах!» и «Ну и ну!». — Перев.), можно найти, если начать с 1 и применить x раз функцию TOWER. Тогда,

WOW(1) = TOWER(1) = 2,

WOW(2) = TOWER(2) = 4,

WOW(3) = TOWER(4) = 65536.

Чтобы найти WOW(4), нужно вычислить TOWER(65536). Чтобы это сделать, нужно начать с 1 и применить функцию EXPONENT 65536 раз. Даже применение функции EXPONENT всего лишь пять раз даёт 265536, — число, которое, будучи записанным цифра за цифрой, заполнило бы две страницы этого журнала. На самом деле даже число, заполняющее все страницы всех книг и всю память всех компьютеров, всё же останется несравнимым с WOW(4).

Тем не менее, чтобы всё-таки записать результат Ван дер Вардена, придётся определить функцию, которая растёт ещё быстрее. Функция ACKERMANN(x) определяется последовательностью DOUBLE(1), EXPONENT(2), TOWER(3), WOW(4) и так далее. ACKERMANN(x) в конце концов растёт быстрее любой функции в этой иерархии. Доказательство Ван дер Вардена даёт следующий количественный результат: если числа 1, 2, ..., ACKERMANN(k) раскрашены двумя красками, то всегда существует одноцветная арифметическая прогрессия длиной k.

Кажется странным, что такие чудовищные числа могут возникнуть из столь невинного утверждения, касающегося только арифметических прогрессий. Многие математики в течение многих лет пытались улучшить доказательство Ван дер Вардена. Неудача следовала за неудачей, и в результате стало укрепляться убеждение в том, что двойная индукция и соответственно функция ACKERMANN являются необходимыми компонентами любого доказательства теоремы Ван дер Вардена. Всё чаще логики пытались найти подтверждения тому, что так оно и есть на самом деле.

В 1987году, однако, израильский логик Саарон Шела из Еврейского университета в Иерусалиме добился крупного успеха. Шела широко признан как человек, лучше всех справляющийся с решением сложнейших задач в современной математике. Он сумел преодолеть барьер функции ACKERMANN и показал следующее: если целые числа от 1 до WOW(k) раскрасить в два цвета, то всегда найдётся одноцветная арифметическая прогрессия длиной k членов.

Характеристики

Тип файла
Документ
Размер
1,31 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее