7548-1 (675549), страница 3
Текст из файла (страница 3)
Некоторое время Никколо Тарталья был почти непобедим в математических соревнованиях; сравниться с ним мог только Джероламо Кардано из Павии.
Мы не знаем, сколь много нового рассказал Тарталья Кардано. Но мастеру хватило этой информации для полного решения кубического уравнения; в итоге Кардано сравнялся с Тартальей в алгебраическом мастерстве.
Решение уравнений-многочленов степеней 3 и 4 стало крупным успехом новой европейской математики. Но за всякий успех приходится платить. Платой за удачи Кардано и Феррари оказалось появление МНИМЫХ чисел. Так были названы квадратные корни из отрицательных чисел. Они неизбежно возникают при решении кубического уравнения по способу Кардано, даже если такое уравнение имеет три действительных корня.
Список литературы
Гиндикин С.Г. Рассказы о физиках и математиках. М.: Наука, 1981.
Квант. 1976. №9.
Никифоровский В.А. В мире уравнений. М.: Наука, 1987.
Никифоровский В.А., Фрейман Л.С. Рождение новой математики. М.: Наука, 1976.















